首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li‐ion batteries (LIB's) are of the greatest practical utility for portable electronics and electric vehicles (EV's). LIB energy, power and cycle life performances depend on cathode and anode compositions and morphology, electrolyte composition and the overall cell design. Electrode morphology is influenced by the shape and size of the active material (AM), conductive additive (CA) particles, the polymeric binder properties, and also on the AM/CA/binder mass ratio. At the same time, it also substantially depends on the electrode preparation process. This process is usually comprised of mixing a solvent, a binder, AM and CA powders, and casting the resulting slurry onto a current collector foil followed by a drying process. Whereas the problems of electrode morphology and their influence on the LIB‐electrode performance always receive a proper attention, the influence of slurry properties and slurry preparation techniques on the electrode morphology is often overlooked or at least underrated. The present work summarizes the current state‐of‐the‐art in the field of LIB‐electrode precursor slurries preparation, characterized by multicomponent compounds and large variations in sizes and shapes of the solid components. Approaches to LIB‐electrode slurry preparation are outlined and discussed in the context of the ultimate LIB‐electrode morphology and performance.  相似文献   

2.
Flexible energy‐storage devices have attracted growing attention with the fast development of bendable electronic systems. However, it still remains a challenge to find reliable electrode materials with both high mechanical flexibility/toughness and excellent electron and lithium‐ion conductivity. This paper reports the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium‐ion batteries. The systematic optimization of the porous morphology is performed by controllably inducing the phase separation of polymethylmethacrylate (PMMA) in polydimethylsiloxane (PDMS) and removing PMMA, in order to generate well‐controlled pore networks. It is demonstrated that the porous CNT‐embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium‐ion batteries. The optimization of the pore size and the volume fraction provides higher capacity by nearly seven‐fold compared to a nonporous nanocomposite.  相似文献   

3.
Metal–organic frameworks (MOFs) with intrinsically porous structures are promising candidates for energy storage, however, their low electrical conductivity limits their electrochemical energy storage applications. Herein, the hybrid architecture of intrinsically conductive Cu‐MOF nanowire arrays on self‐supported polypyrrole (PPy) membrane is reported for integrated flexible supercapacitor (SC) electrodes without any inactive additives, binders, or substrates involved. The conductive Cu‐MOFs nanowire arrays afford high conductivity and a sufficiently active surface area for the accessibility of electrolyte, whereas the PPy membrane provides decent mechanical flexibility, efficient charge transfer skeleton, and extra capacitance. The all‐solid‐state flexible SC using integrated hybrid electrode demonstrates an exceptional areal capacitance of 252.1 mF cm?2, an energy density of 22.4 µWh cm?2, and a power density of 1.1 mW cm?2, accompanied by an excellent cycle capability and mechanical flexibility over a wide range of working temperatures. This work not only presents a robust and flexible electrode for wide temperature range operating SC but also offers valuable concepts with regards to designing MOF‐based hybrid materials for energy storage and conversion systems.  相似文献   

4.
A high‐performance Li–Se battery is demonstrated by adopting a novel Se cathode design. The Se cathode is a one‐piece body combined with a Se deposited current collector and a solid polymer electrolyte (SPE). In the preparation of the Se cathode, Se is electrodeposited on Ni‐foam, and the pores are filled with SPE layers. Through this electrodeposition, the cathode is easily fabricated, and charge transports are facile. The use of the SPE layer offers a durable Se electrode, enhancing ion pathways, securing safety, and suppressing undesirable electrochemical reactions. Li–Se batteries assembled with the one‐piece Se cathode and Li‐metal anode, without using conductive carbon, polymer binder, and separator, exhibit ultrastable performance with a low capacity decay of 0.001% per cycle at 1 C over 3000 cycles. The rational design of a one‐piece electrode may hold great promise for the future development of energy storage devices with facile fabrication process and long‐term stability.  相似文献   

5.
To develop a long cycle life and good rate capability electrode, 3D hierarchical porous α‐Fe2O3 nanosheets are fabricated on copper foil and directly used as binder‐free anode for lithium‐ion batteries. This electrode exhibits a high reversible capacity and excellent rate capability. A reversible capacity up to 877.7 mAh g?1 is maintained at 2 C (2.01 A g?1) after 1000 cycles, and even when the current is increased to 20 C (20.1 A g?1), a capacity of 433 mA h g?1 is retained. The unique porous 3D hierarchical nanostructure improves electronic–ionic transport, mitigates the internal mechanical stress induced by the volume variations of the electrode upon cycling, and forms a 3D conductive network during cycling. No addition of any electrochemically inactive conductive agents or polymer binders is required. Therefore, binder‐free electrodes further avoid the uneven distribution of conductive carbon on the current collector due to physical mixing and the addition of an insulator (binder), which has benefits leading to outstanding electrochemical performance.  相似文献   

6.
The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell architectures as well as electroactive materials. Designing thick electrodes with more electroactive materials is a promising strategy to improve the energy density of lithium‐ion batteries (LIBs) without alternating the underlying chemistry. However, the progress toward thick, high areal capacity electrodes is severely limited by the sluggish electronic/ionic transport and easy deformability of conventional electrodes. A self‐supported ultrahigh‐capacity and fire‐resistant LiFePO4 (UCFR‐LFP)‐based nanocomposite cathode is demonstrated here. Benefiting from the structural and chemical uniqueness, the UCFR‐LFP electrodes demonstrate exceptional improvements in electrochemical performance and mass loading of active materials, and thermal stability. Notably, an ultrathick UCFR‐LFP electrode (1.35 mm) with remarkably high mass loading of active materials (108 mg cm?2) and areal capacity (16.4 mAh cm?2) is successfully achieved. Moreover, the 1D inorganic binder‐like ultralong hydroxyapatite nanowires (HAP NWs) enable the UCFR‐LFP electrode with excellent thermal stability (structural integrity up to 1000 °C and electrochemical activity up to 750 °C), fire‐resistance, and wide‐temperature operability. Such a unique UCFR‐LFP electrode offers a promising solution for next‐generation LIBs with high energy density, high safety, and wide operating‐temperature window.  相似文献   

7.
Flexible Na/K‐ion batteries (NIBs/KIBs) exhibit great potential applications and have drawn much attention due to the continuous development of flexible electronics. However, there are still many huge challenges, mainly the design and construction of flexible electrodes (cathode and anode) with outstanding electrochemical properties. In this work, a unique approach to prepare flexible electrode is proposed by utilizing the commercially available cotton cloth–derived carbon cloth (CC) as a flexible anode and the substrate of a cathode. The binder‐free, self‐supporting, and flexible cathodes (FCC@N/KPB) are prepared by growing Prussian blue microcubes on the flexible CC (FCC). Na/K‐ion full batteries (FCC//FCC@N/KPB) are assembled by using FCC and FCC@N/KPB as anode and cathode, respectively. Electrochemical performance, mechanical flexibility, and practicability of FCC//FCC@N/KPB Na/K‐ion full batteries are evaluated in both coin cells and flexible pouch cells, demonstrating their superior energy‐storage properties (excellent rate performance and cycling stability) and remarkable flexibility (they can work under different bending states). This work provides a new and profound strategy to design flexible electrodes, promoting the development of flexible NIBs/KIBs to be practical and sustainable.  相似文献   

8.
The use of electrode additives such as binder and conductive additive (CA) in addition to high pore volume for electrolytes, results in reduced volumetric energy densities of all battery electrodes. In this work, it is proposed to use poly(furfuryl alcohol) (PFA) conductive resin as a trifunctional electrode additive to replace polyvinylidene fluoride (PVDF) and CA while simultaneously enabling low porosity electrode function. The resultant PFA binder has a long‐range ordered structure of conjugated diene, which allow electronic conductivity that leads to a CA‐free electrode fabrication process. The oxygen heteroatoms in the PFA structure reduce the diffusion barriers of lithium ions, lowers the amount of required electrolyte/pore volume and thus, increasing electrode density. Serving as a trifunctional electrode additive, a high electrode density of 2.65 g cm?3 of the LiFePO4 (LFP) electrode and therefore the highest volumetric energy density of 1551 Wh L?1 so far. The LFP electrode using PFA binder can achieve a capacity retention of ≈80% and Coulombic efficiency of over 99.9% after cycling for 500 times. The proposed in situ polymerization strategy could revolutionize the electrode process, with the advantages of being simple, environmentally friendly, and easily scalable to industrial applications.  相似文献   

9.
It is well known that the mechanical properties of lithium‐ion battery electrodes impact their electrochemical performance. This is especially critical for Si‐based negative electrodes, which suffer from large volume changes of the active mass upon cycling. Here, this study presents a postprocessing treatment (called maturation) that improves the mechanical and electrochemical stabilities of silicon‐based anodes made with an acidic aqueous binder. It consists of storing the electrode in a humid atmosphere for a few days before drying and cell assembly. This results in a beneficial in situ reactive modification of the interfaces within the electrode. First, the binder tends to concentrate at the silicon interparticle contacts. As a result, the cohesion of the composite film is strengthened. Second, the corrosion of the copper current collector, inducing the formation of copper carboxylate bonds, improves the adhesion of the composite film. The great improvement of the mechanical stability of the matured electrode is confirmed by in‐operando optical microscopy showing the absence of film delamination. The result is a significant electrochemical performance gain, up to a factor 10, compared to a not‐matured electrode. This maturation procedure can be applied to other types of electrodes for improving their electrochemical performance and also their handling during cell manufacturing.  相似文献   

10.
Stretchable electronics are considered as next‐generation devices; however, to realize stretchable electronics, it is first necessary to develop a deformable energy device. Of the various components in energy devices, the fabrication of stretchable current collectors is crucial because they must be mechanically robust and have high electrical conductivity under deformation. In this study, the authors present a conductive polymer composite composed of Jabuticaba‐like hybrid carbon fillers containing carbon nanotubes and carbon black in a simple solution process. The hybrid carbon/polymer (HCP) composite is found to effectively retain its electrical conductivity, even when under high strain of ≈200%. To understand the behavior of conductive fillers in the polymer matrix when under mechanical strain, the authors investigate the microstructure of the composite using an in situ small‐angle X‐ray scattering analysis. The authors observe that the HCP produces efficient electrical pathways for filler interconnections upon stretching. The authors develop a stretchable aqueous rechargeable lithium‐ion battery (ARLB) that utilizes this HCP composite as a stretchable current collector. The ARLB exhibits excellent rate capability (≈90 mA h g?1 at a rate of 20 C) and outstanding capacity retention of 93% after 500 cycles. Moreover, the stretchable ARLB is able to efficiently deliver power even when under 100% strain.  相似文献   

11.
Storing energy within flexible and safe materials is one of the most important goals for energy storage devices. To that end, high‐performance conformable electrolytes, which can transport ions quickly and safely, and can also effectively separate and bond strongly to the two electrodes, are of great importance. However, it is challenging to develop an electrolyte that can play these multiple roles simultaneously. Here, aiming to overcome this challenge, a particle‐based approach to the fabrication of a high‐performance, gum‐like electrolyte is described. The intriguing properties of the gum‐like electrolyte include high ionic conductivity, good mechanical properties, excellent adhesion properties, and, more importantly, thermal‐protection capability. It is shown that these significant properties are well‐controlled by the incorporation of wax particles with variable size, loading, and surface properties that can be designed through the use of an apporpriate surfactant. This provides a promising solution for high‐performance electrolytes and indicates a cost‐effective approach to fabricating multifunctional ion‐conducting materials.  相似文献   

12.
The instability of lithium (Li) metal anodes due to dendritic growth and low Coulombic efficiency (CE) hinders the practical application of high‐energy‐density Li metal batteries. Here, the systematic studies of improving the stability of Li metal anodes and the electrochemical performance of Li metal batteries through the addition of combinational additives and the optimization of solvent compositions in dual‐salt/carbonate electrolytes are reported. A dendrite‐free and high CE of 98.1% for Li metal anode is achieved. The well‐protected Li metal anode and the excellent cyclability and rate capability of the 4‐V Li metal batteries are obtained. This is attributed to the formation of a robust, denser, more polymeric, and higher ionic conductive surface film on the Li metal anode via the electrochemical reductive decompositions of the electrolyte components and the ring‐opening polymerization of additives and cyclic carbonate solvents. The key findings of this work indicate that the optimization of solvent compositions and the manipulation of additives are facile and effective ways to enhance the performances of Li metal batteries.  相似文献   

13.
Sulfur electrodes confined in an inert carbon matrix show practical limitations and concerns related to low cathode density. As a result, these electrodes require a large amount of electrolyte, normally three times more than the volume used in commercial Li‐ion batteries. Herein, a high‐energy and high‐performance lithium–sulfur battery concept, designed to achieve high practical capacity with minimum volume of electrolyte is proposed. It is based on deposition of polysulfide species on a self‐standing and highly conductive carbon nanofiber network, thus eliminating the need for a binder and current collector, resulting in high active material loading. The fiber network has a functionalized surface with the presence of polar oxygen groups, with the aim to prevent polysulfide migration to the lithium anode during the electrochemical process, by the formation of S–O species. Owing to the high sulfur loading (6 mg cm?2) and a reduced free volume of the sulfide/fiber electrode, the Li–S cell is designed to work with as little as 10 µL cm?2 of electrolyte. With this design the cell has a high energy density of 450 Wh kg?1, a lifetime of more than 400 cycles, and the possibility of low cost, by use of abundant and eco‐friendly materials.  相似文献   

14.
Early demonstrations of wearable devices have driven interest in flexible lithium‐ion batteries. Previous demonstrations of flexible lithium‐ion batteries trade off between low areal capacity, poor mechanical flexibility and/or high thickness of inactive components. Here, a reinforced electrode design is used to support the active layers of the battery and a freestanding carbon nanotube (CNT) layer is used as the current collector. The supported architecture helps to increase the areal capacity (mAh cm‐2) of the battery and improve the tensile strength and mechanical flexibility of the electrodes. Batteries based on lithium cobalt oxide and lithium titanate oxide shows excellent electrochemical and mechanical performance. The battery has an areal capacity of ≈1 mAh cm‐2 and a capacity retention of around 94% after cycling the battery for 450 cycles at a C/2 rate. The reinforced electrode has a tensile strength of ≈5.5–7.0 MPa and shows excellent capacity retention after repeatedly flexing to a bending radius ranging from 45 to 10 mm. The relationships between mechanical flexing, electrochemical performance, and mechanical integrity of the battery are studied using electrochemical cycling, electron microscopy, and electrochemical impedance spectroscopy (EIS).  相似文献   

15.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

16.
Aqueous Ni/Fe batteries have great potential as flexible energy storage devices, owing to their low cost, low toxicity, high safety, and high energy density. However, the poor cycling stability has limited the widely expected application of Ni/Fe batteries, while the use of heavy metal substrates cannot meet the basic requirement for flexible devices. In this work, a flexible type of solid‐state Ni/Fe batteries with high energy and power densities is rationally developed using needle‐like Fe3O4 and flake‐like NiO directly grown on carbon cloth/carbon nanofiber (CC–CF) matrix as the anode and cathode, respectively. The hierarchical CC–CF substrate with high electric conductivity and good flexibility serves as an ideal support for guest active materials of nanocrystalline Fe3O4 and NiO, which can effectively buffer the volume change giving rise to good cycling ability. By utilizing a gel electrolyte, a robust and mechanically flexible quasi‐solid‐state Ni/Fe full cell can be assembled. It demonstrates optimal electrochemical performance, such as high energy density (5.2 mWh cm?3 and 94.5 Wh Kg?1), high power density (0.64 W cm?3 and 11.8 KW Kg?1), together with excellent cycling ability. This work provides an example of solid‐state alkaline battery with high electrochemical performance and mechanical flexibility, holding great potential for future flexible electronic devices.  相似文献   

17.
Two kinds of free‐standing electrodes, reduced graphene oxide (rGO)‐wrapped Fe‐doped MnO2 composite (G‐MFO) and rGO‐wrapped hierarchical porous carbon microspheres composite (G‐HPC) are fabricated using a frozen lake‐inspired, bubble‐assistance method. This configuration fully enables utilization of the synergistic effects from both components, endowing the materials to be excellent electrodes for flexible and lightweight electrochemical capacitors. Moreover, a nonaqueous HPC‐doped gel polymer electrolyte (GPE‐HPC) is employed to broad voltage window and improve heat resistance. A fabricated asymmetric supercapacitor based on G‐MFO cathode and G‐HPC anode with GPE‐HPC electrolyte achieves superior flexibility and reliability, enhanced energy/power density, and outstanding cycling stability. The ability to power light‐emitting diodes also indicates the feasibility for practical use. Therefore, it is believed that this novel design may hold great promise for future flexible electronic devices.  相似文献   

18.
Accurate representations of the 3D structure within a lithium‐ion battery are key to understanding performance limitations. However, obtaining exact reconstructions of electrodes, where the active particles, the carbon black and polymeric binder domain, and the pore space are visualized is challenging. Here, it is shown that multimodal imaging can be used to overcome this challenge. High‐resolution ptychographic X‐ray computed tomography are combined with lower resolution but higher contrast transmission X‐ray tomographic microscopy to obtain 3D reconstructions of pristine and cycled graphite‐silicon composite electrodes. This cross‐correlation enables quantitative analysis of the surface of active particles, including the heterogeneity of carbon‐black and binder domain and solid‐electrolyte interphase coverage. Capturing the active particles as well as the carbon black‐binder domain allows using these segmented structures for electrochemical simulations to highlight the influence of the particle embedding on local state of charge heterogeneities.  相似文献   

19.
Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10?4 S cm?1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability.  相似文献   

20.
The fabrication of fully printable, flexible micro‐supercapacitors (MSCs) with high energy and power density remains a significant technological hurdle. To overcome this grand challenge, the 2D material MXene has garnered significant attention for its application, among others, as a printable electrode material for high performing electrochemical energy storage devices. Herein, a facile and in situ process is proposed to homogeneously anchor hydrous ruthenium oxide (RuO2) nanoparticles on Ti3C2Tx MXene nanosheets. The resulting RuO2@MXene nanosheets can associate with silver nanowires (AgNWs) to serve as a printable electrode with micrometer‐scale resolution for high performing, fully printed MSCs. In this printed nanocomposite electrode, the RuO2 nanoparticles contribute high pseudocapacitance while preventing the MXene nanosheets from restacking, ensuring an effective ion highway for electrolyte ions. The AgNWs coordinate with the RuO2@MXene to guarantee the rheological property of the electrode ink, and provide a highly conductive network architecture for rapid charge transport. As a result, MSCs printed from the nanocomposite inks demonstrate volumetric capacitances of 864.2 F cm?3 at 1 mV s?1, long‐term cycling performance (90% retention after 10 000 cycles), good rate capability (304.0 F cm?3 at 2000 mV s?1), outstanding flexibility, remarkable energy (13.5 mWh cm?3) and power density (48.5 W cm?3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号