首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic p‐type materials are potential candidates as solution processable hole transport materials (HTMs) for colloidal quantum dot solar cells (CQDSCs) because of their good hole accepting/electron blocking characteristics and synthetic versatility. However, organic HTMs have still demonstrated inferior performance compared to conventional p‐type CQD HTMs. In this work, organic π‐conjugated polymer (π‐CP) based HTMs, which can achieve performance superior to that of state‐of‐the‐art HTM, p‐type CQDs, are developed. The molecular engineering of the π‐CPs alters their optoelectronic properties, and the charge generation and collection in CQDSCs using them are substantially improved. A device using PBDTTPD‐HT achieves power conversion efficiency (PCE) of 11.53% with decent air‐storage stability. This is the highest reported PCE among CQDSCs using organic HTMs, and even higher than the reported best solid‐state ligand exchange‐free CQDSC using pCQD‐HTM. From the viewpoint of device processing, device fabrication does not require any solid‐state ligand exchange step or layer‐by‐layer deposition process, which is favorable for exploiting commercial processing techniques.  相似文献   

2.
Solution‐processed colloidal quantum dot (CQD) solar cells harvesting the infrared part of the solar spectrum are especially interesting for future use in semitransparent windows or multilayer solar cells. To improve the device power conversion efficiency (PCE) and stability of the solar cells, surface passivation of the quantum dots is vital in the research of CQD solar cells. Herein, inorganic CsPbI3 perovskite (CsPbI3‐P) coating on PbS CQDs with a low‐temperature, solution‐processed approach is reported. The PbS CQD solar cell with CsPbI3‐P coating gives a high PCE of 10.5% and exhibits remarkable stability both under long‐term constant illumination and storage under ambient conditions. Detailed characterization and analysis reveal improved passivation of the PbS CQDs with the CsPbI3‐P coating, and the results suggest that the lattice coherence between CsPbI3‐P and PbS results in epitaxial induced growth of the CsPbI3‐P coating. The improved passivation significantly diminishes the sub‐bandgap trap‐state assisted recombination, leading to improved charge collection and therefore higher photovoltaic performance. This work therefore provides important insight to improve the CQD passivation by coating with an inorganic perovskite ligand for photovoltaics or other optoelectronic applications.  相似文献   

3.
Colloidal quantum dots (CQDs) are demonstrated to be promising materials to realize high‐performance thermoelectrics owing to their low thermal conductivity. The most studied CQD films, however, are using long ligands that require high processing and operation temperature (>400 °C) to achieve optimum thermoelectric performance. Here the thermoelectric properties of CQD films cross‐linked using short ligands that allow strong inter‐QD coupling are reported. Using the ligands, p‐type thermoelectric solids are demonstrated with a high Seebeck coefficient and power factor of 400 μV K?1 and 30 µW m?1 K?2, respectively, leading to maximum ZT of 0.02 at a lower measurement temperature (<400 K) and lower processing temperature (<300 °C). These ligands further reduce the annealing temperature to 175 °C, significantly increasing the Seebeck coefficient of the CQD films to 580 μV K?1. This high Seebeck coefficient with a superior ZT near room temperature compared to previously reported high temperature‐annealed CQD films is ascribed to the smaller grain size, which enables the retainment of quantum confinement and significantly increases the hole effective mass in the films. This study provides a pathway to approach quantum confinement for achieving a high Seebeck coefficient yet strong inter‐QD coupling, which offers a step toward low‐temperature‐processed high‐performance thermoelectric generators.  相似文献   

4.
Colloidal quantum dots (CQDs) are attractive materials for thermoelectric applications due to their simple and low‐cost processing; advantageously, they also offer low thermal conductivity and high Seebeck coefficient. To date, the majority of CQD thermoelectric films reported upon have been p‐type, while only a few reports are available on n‐type films. High‐performing n‐ and p‐type films are essential for thermoelectric generators (TEGs) with large output voltage and power. Here, high‐thermoelectric‐performance n‐type CQD films are reported and showcased in high‐performance all‐CQD TEGs. By engineering the electronic coupling in the films, a thorough removal of insulating ligands is achieved and this is combined with excellent surface trap passivation. This enables a high thermoelectric power factor of 24 µW m?1 K?2, superior to previously reported n‐type lead chalcogenide CQD films operating near room temperature (<1 µW m?1 K?2). As a result, an all‐CQD film TEG with a large output voltage of 0.25 V and a power density of 0.63 W m?2 at ?T = 50 K is demonstrated, which represents an over fourfold enhancement to previously reported p‐type only CQD TEGs.  相似文献   

5.
The tunnel junction (TJ) intermediate connection layer (ICL), which is the most critical component for high‐efficient tandem solar cell, generally consists of hole conducting layer and polyethyleneimine (PEI) polyelectrolyte. However, because of the nonconducting feature of pristine PEI, photocurrent is open‐restricted in ICL even with a little thick PEI layer. Here, high‐efficiency homo‐tandem solar cells are demonstrated with enhanced efficiency by introducing carbon quantum dot (CQD)‐doped PEI on TJ–ICL. The CQD‐doped PEI provides substantial dynamic advantages in the operation of both single‐junction solar cells and homo‐tandem solar cells. The inclusion of CQDs in the PEI layer leads to improved electron extraction property in single‐junction solar cells and better series connection in tandem solar cells. The highest efficient solar cell with CQD‐doped PEI layer in between indium tin oxide (ITO) and photoactive layer exhibits a maximum power conversion efficiency (PCE) of 9.49%, which represents a value nearly 10% higher than those of solar cells with pristine PEI layer. In the case of tandem solar cells, the highest performing tandem solar cell fabricated with C‐dot‐doped PEI layer in ICL yields a PCE of 12.13%; this value represents an ≈15% increase in the efficiency compared with tandem solar cells with a pristine PEI layer.  相似文献   

6.
The interaction of glucose‐derived carbon quantum dots (CQDs) with silver (Ag) and gold (Au) nanoparticles (NPs) was explored by fluorescence spectroscopy. Both metal NPs cause an efficient quenching of CQD fluorescence, which is likely due to the energy transfer process between CQDs as donors and metal NPs as acceptors. The Stern–Volmer plots were evaluated and corresponding quenching constants were found to be 1.9 × 1010 and 2.2 × 108 M?1 for AgNPs and AuNPs, respectively. The analytical applicability of these systems was demonstrated for turn‐on fluorescence detection of the anti‐cancer drug, 6‐thioguanine. Because the CQD–AgNP system had much higher sensitivity than the CQD–AuNP system, we used it as a selective fluorescence probe in a turn‐on assay of 6‐thioguanine. Under optimum conditions, the calibration graph was linear from 0.03 to 1.0 μM with a detection limit of 0.01 μM. The developed method was applied to the analysis of human plasma samples with satisfactory results.  相似文献   

7.
Low‐temperature solution‐processed high‐efficiency colloidal quantum dot (CQD) photovoltaic devices are developed by improving the interfacial properties of p–n heterojunctions. A unique conjugated polyelectrolyte, WPF‐6‐oxy‐F, is used as an interface modification layer for ZnO/PbS‐CQD heterojunctions. With the insertion of this interlayer, the device performance is dramatically improved. The origins of this improvement are determined and it is found that the multifunctionality of the WPF‐6‐oxy‐F interlayer offers the following essential benefits for the improved CQD/ZnO junctions: (i) the dipole induced by the ionic substituents enhances the quasi‐Fermi level separation at the heterojunction through favorable energy band‐bending, (ii) the ethylene oxide groups containing side chains can effectively passivate the interfacial defect sites of the heterojunction, and (iii) these effects occur without deterioration in the intrinsic depletion region or the series resistance of the device. All of the figures‐of‐merit of the devices are improved as a result of the enhanced built‐in potential (electric field) and the reduced interfacial charge recombination at the heterojunction. The benefits due to the WPF‐6‐oxy‐F interlayer are generally applicable to various types of PbS/ZnO heterojunctions. Finally, CQD photovoltaic devices with a power conversion efficiency of 9% are achievable, even by a solution process at room temperature in an air atmosphere. The work suggests a useful strategy to improve the interfacial properties of p–n heterojunctions by using polymeric interlayers.  相似文献   

8.
We report on a simple and sensitive sulfur and nitrogen co‐doped carbon quantum dot (S,N‐CQD)‐based chemiluminescence (CL) sensor for the determination of indomethacin. S,N‐CQDs were prepared by a hydrothermal method and characterized by fluorescence spectra, Fourier transform infrared spectroscopy and transmission electron microscopy. To obtain the best CL system for determination of indomethacin, the reaction of S,N‐CQDs with some common oxidants was studied. Among the tested systems, the S,N‐CQD–KMnO4 reaction showed the highest sensitivity for the detection of indomethacin. Under optimum conditions, the calibration plot was linear over a concentration range of 0.1–1.5 mg L?1, with a limit of detection (3σ) of 65 μg L?1. The method was applied to the determination of indomethacin in environmental and biological samples with satisfactory results.  相似文献   

9.
High‐efficiency solid‐state‐ligand‐exchange (SSE) step‐free colloidal quantum dot photovoltaic (CQDPV) devices are developed by employing CQD ink based active layers and organic (Polythieno[3,4‐b]‐thiophene‐co‐benzodithiophene (PTB7) and poly(3‐hexylthiophene) (P3HT)) based hole transport layers (HTLs). The device using PTB7 as an HTL exhibits superior performance to that using the current leading organic HTL, P3HT, because of favorable energy levels, higher hole mobility, and facilitated interfacial charge transfer. The PTB7 based device achieves power conversion efficiency (PCE) of 9.60%, which is the highest among reported CQDPVs using organic HTLs. This result is also comparable to the PCE of an optimized device based on a thiol‐exchanged p‐type CQD, the current‐state‐of‐the‐art HTL. From the viewpoint of device processing, the fabrication of CQDPVs is achieved by direct single‐coating of CQD active layers and organic HTLs at low temperature without SSE steps. The experimental results and device simulation results in this work suggest that further engineering of organic HTL materials can open new doors to improve the performance and processing of CQDPVs.  相似文献   

10.
For the first time, the plasmonic gold bipyramids (Au BPs) are introduced to the PbS colloidal quantum dot (CQD) solar cells for improved infrared light harvesting. The localized surface plasmon resonance peaks of Au BPs matches perfectly with the absorption peaks of conventional PbS CQDs. Owing to the geometrical novelty of Au BPs, they exhibit significantly stronger far‐field scattering effect and near‐field enhancement than conventional plasmonic Au nanospheres (NSs). Consequently, device open‐circuit voltage (Voc) and short‐circuit current (Jsc) are simultaneously enhanced, while plasmonic photovoltaic devices based on Au NSs only achieve improved Jsc. The different effects and working mechanisms of these two Au nanoparticles are systematically investigated. Moreover, to realize effective broadband light harvesting, Au BPs and Au NSs are used together to simultaneously enhance the device optical and electrical properties. As a result, a significantly increased power conversion efficiency (PCE) of 9.58% is obtained compared to the PCE of 8.09% for the control devices due to the synergistic effect of the two plasmonic Au nanoparticles. Thus, this work reveals the intriguing plasmonic effect of Au BPs in CQD solar cells and may provide insight into the future plasmonic enhancement for solution‐processed new‐generation solar cells.  相似文献   

11.
以模式植物拟南芥(Arabidopsis thaliana(L.)Heynh)为材料,从生理及分子层面研究碳量子点(Carbon quantum dots,CQDs)对拟南芥生物效应的影响。结果显示,CQDs能被拟南芥根部吸收并连续运输到叶片,对种子萌发率无明显影响,但能显著促进幼苗主根伸长和株重的增加。幼苗叶片叶绿体中色素含量随CQDs浓度的升高而显著降低。脯氨酸与丙二醛含量随CQDs浓度的升高呈先上升后下降趋势。超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性随CQDs浓度的升高呈先上升后下降趋势,在抗氧化酶系统中起主导作用;叶片内源过氧化氢(H2O2)的积累随CQDs浓度的升高而升高,具有显著的浓度依赖效应。与其他纳米材料处理不一样的是,硫同化及胁迫相关基因在CQDs处理后表达量下调,这可能与CQDs粒子本身的特性有关。  相似文献   

12.
While colloidal quantum dot photovoltaic devices (CQDPVs) can achieve a power conversion efficiency (PCE) of ≈12%, their insufficient optical absorption in the near‐infrared (NIR) regime impairs efficient utilization of the full spectrum of visible light. Here, high‐efficiency, solution‐processed, hybrid series, tandem photovoltaic devices are developed featuring CQDs and organic bulk heterojunction (BHJ) photoactive materials for front‐ and back‐cells, respectively. The organic BHJ back‐cell efficiently harvests the transmitted NIR photons from the CQD front‐cell, which reinforces the photon‐to‐current conversion at 350–1000 nm wavelengths. Optimizing the short‐circuit current density balance of each sub‐cell and creating a near ideal series connection using an intermediate layer achieve a PCE (12.82%) that is superior to that of each single‐junction device (11.17% and 11.02% for the CQD and organic BHJ device, respectively). Notably, the PCE of the hybrid tandem device is the highest among the reported CQDPVs, including single‐junction devices and tandem devices. The hybrid tandem device also exhibits almost negligible degradation after air storage for 3 months. This study suggests a potential route to improve the performance of CQDPVs by proper hybridization with NIR‐absorbing photoactive materials.  相似文献   

13.
This study reports the fabrication of stable, high‐performance, simple structured tandem solar cells based on PbS colloidal quantum dots (CQDs) under ambient air. This study also reveals detailed device engineering to deposit each functional layer in the subcells at low temperature to avoid damage to the PbS CQDs and meanwhile makes the fabrication process compatible to flexible plastic substrate. Two efficient recombination layers (RLs) are rationally designed to connect the two subcells in series. The use of solution‐processed RL with an organic PEDOT:PSS (poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate) interlayer leads to the fabrication of the tandem devices in solution process. The use of robust inorganic RL containing an ultrathin Au interlayer results in more efficient device performance and remarkably improved device lifetime. The optimal PbS CQDs tandem cells based on inorganic RL demonstrate a high power conversion efficiency approaching 9%. This efficiency is more than two times higher than the previous record of 4.2%, which has been kept for more than five years. The remarkable stability, high performance, and low‐temperature processing of these tandem devices may provide insight into the commercialization of flexible and large‐area CQDs tandem solar cells in the near future.  相似文献   

14.
CdSe nanocrystals (NCs) can be used as an electron acceptor in solar cells, employing organic ligands to passivate their surface and make them processable from solution. The nature and abundance of impurities present after NC ligand exchange from oleic acid to n‐butylamine are identified. A further purification step using hexane as a selective solvent is described, which excludes NC aggregates from solution. The influence of NC aggregates on photovoltaic device performance is studied in a CdSe:poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene vinylene] (MDMO‐PPV) bulk heterojunction solar cell. The exclusion of NC aggregates leads to a four‐fold increase in device power conversion efficiency (PCE) in optimized devices. A superior blend morphology leading to improved charge generation and a better NC percolation network is identified as the main causes of this increased solar cell performance.  相似文献   

15.
Methylammonium lead iodide (MAPbI3) perovskites are organic–inorganic semiconductors with long carrier diffusion lengths serving as the light‐harvesting component in optoelectronics. Through a substitutional growth of MAPbI3 catalyzed by polar protic alcohols, evidence is shown for their substrate‐ and annealing‐free production and use of toxic solvents and high temperature is prevented. The resulting variable‐sized crystals (≈100 nm–10 µm) are found to be tetragonally single‐phased in alcohols and precipitated as powders that are metallic‐lead‐free. A comparatively low MAPbI3 yield in toluene supports the role of alcohol polarity and the type of solvent (protic vs aprotic). The theoretical calculations suggest that overall Gibbs free energy in alcohols is lowered due to their catalytic impact. Based on this alcohol‐catalyzed approach, MAPbI3 is obtained, which is chemically stable in air up to ≈1.5 months and thermally stable (≤300 °C). This method is amendable to large‐scale manufacturing and ultimately can lead to energy‐efficient, low‐cost, and stable devices.  相似文献   

16.
Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate‐to‐ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high‐throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high‐performance liquid chromatography methods. Chirality 27:700–707, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Strong anion exchange chromatography has frequently been employed as a viral clearance step during downstream processing of biological therapeutics. When challenged with viruses having only slightly acidic isoelectric points, the performance of the anion exchange operation becomes highly dependent on the buffer salt concentration, with the virus log reduction value (LRV) dropping dramatically in buffers with 50–150 mM salt. In this work, a series of anion exchange membrane adsorbers utilizing alternative ligand chemistries instead of the traditional quaternary amine (Q) ligand have been developed that overcome this limitation. Four different ligands (agmatine, tris‐2‐aminoethyl amine, polyhexamethylene biguanide, and polyethyleneimine) achieved >5 LRV of bacteriophage ΦX174 (pI ~ 6.7) at pH 7.5 and up to 150 mM salt, compared to 0 LRV for the Q ligand. By evaluating structural derivatives of the successful ligands, three factors were identified that contributed to ligand salt tolerance: ligand net charge, ligand immobilization density on the membrane, and molecular structure of the ligand‐binding group. Based on the results of this study, membrane adsorbers that incorporate alternative ligands provide a more robust and salt tolerant viral clearance‐processing step compared to traditional strong anion exchange membrane adsorbers. Biotechnol. Bioeng. 2009;103: 920–929. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
Nonsteroidal anti‐inflammatory drugs are considered as potential therapeutic agents against Alzheimer's disease. Using replica exchange molecular dynamics and atomistic implicit solvent model, we studied the mechanisms of binding of naproxen and ibuprofen to the Aβ fibril derived from solid‐state NMR measurements. The binding temperature of naproxen is found to be almost 40 K higher than of ibuprofen implicating higher binding affinity of naproxen. The key factor, which enhances naproxen binding, is strong interactions between ligands bound to the surface of the fibril. The naphthalene ring in naproxen appears to provide a dominant contribution to ligand‐ligand interactions. In contrast, ligand‐fibril interactions cannot explain differences in the binding affinities of naproxen and ibuprofen. The concave fibril edge with the groove is identified as the primary binding location for both ligands. We show that confinement of the ligands to the groove facilitates ligand‐ligand interactions that lowers the energy of the ligands bound to the concave edge compared with those bound to the convex edge. Our simulations appear to provide microscopic rationale for the differing binding affinities of naproxen and ibuprofen observed experimentally. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Different characteristics of cleavage kinetics of resin-bound amino alcohols and their peptide derivatives were observed in acid containing protic and aprotic solvent mixtures. The hydrolysis reactions are hindered by steric crowding around the cleaving C--O bond and accelerated by the special solvation effect of CF(3)CH(2)OH on the peptide chain as well as the increase of the strength and concentration of the acid. In trifluoroacetic acid containing mixtures, trifluoroacetylation of the peptide alcohols was detected. The appearance of O-trifluoroacetyl serine and threonine derivatives is detected in cleavage mixtures containing trifluoroacetic acid in anhydrous solvent.  相似文献   

20.
Recent x-ray crystallographic studies of the acetylcholine-binding protein (AChBP) suggest that loop C, found at the circumference of the pentameric molecule, shows distinctive conformational changes upon antagonist and agonist occupation. We have employed hydrogen-deuterium exchange mass spectrometry to examine the influence of bound ligands on solvent exposure of AChBP. Quantitative measurements of deuterium incorporation are possible for approximately 56% of the Lymnaea AChBP sequence, covering primarily the outer surface of AChBP. In the apoprotein, two regions flanking the ligand occupation site at the subunit interface, loop C (residues 175-193) and loop F (residues 164-171), show greater extents of solvent exchange than other regions of the protein including the N- and C-terminal regions. Occupation by nicotinic agonists, epibatidine and lobeline, and nicotinic antagonists, methyllycaconitine, alpha-bungarotoxin, and alpha-cobratoxin, markedly restricts the exchange of loop C amide protons, influencing both the rates and degrees of exchange. Solvent exposure of loop C and its protection by ligand suggest that in the apoprotein, loop C exhibits rapid fluctuations in an open conformation. Bound agonists restrict solvent exposure through loop closure, whereas the larger antagonists restrict solvent exposure largely through occlusion of solvent. Loop F, found on the complementary subunit surface at the interface, also reveals ligand selective changes in amide proton exchange rates. Agonists do not affect solvent accessibility of loop F, whereas certain antagonists cause subtle accessibility changes. These results reveal dynamic states and fluctuating movements in the vicinity of the binding site for unligated AChBP that can be influenced selectively by ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号