首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from sedimentation analysis suggest that modification of about 40% of free amino groups of inorganic pyrophosphatase by maleic anhydride, pH 10.5, results in a loss of the enzyme ability to form dimers at neutral values of pH. The specific activity of monomeric pyrophosphatase is 50-80% of that of the dimeric form. The monomer has a pH optimum of about 7, requires metal ions for activation of both enzyme and substrate and is capable of exergonic synthesis of PPi in the active center. The enzyme binding to PPi is strongly stabilized by fluoride. The experimental data indicate that the individual subunit of inorganic pyrophosphatase possesses all the main catalytic properties of native dimeric molecule.  相似文献   

2.
Intact rat liver mitochondria have very low hydrolytic activity, if any, toward exogenous pyrophosphate. The activity can be unmasked by making mitochondria permeable to PPi by toluene treatment or disrupting them with detergents or ultrasound, indicating that the active site of pyrophosphatase is located in the matrix. Initial rates of PPi hydrolysis by toluene-permeabilized mitochondria and purified pyrophosphatase were found to depend in a similar manner on PPi and Mg2+ concentrations. The simplest model consistent with the data in both cases implies that the reaction proceeds through two pathways and requires MgPPi as the substrate and, at least, one Mg2+ ion as the activator. In the presence of 0.4 mM Mg2+ (physiological concentration), the inhibition constant for Ca2+ is 12 microM and the enzyme activity is, at least, 50% maximal. The results suggest that the activity of pyrophosphatase in mitochondria is high enough to keep free PPi concentration at a level close to that at equilibrium.  相似文献   

3.
Intact rat liver mitochondria possess a very low hydrolytic activity, if any, towards exogenous pyrophosphate. This activity can be unmasked by making mitochondria permeable to PPi by toluene treatment or by disrupting them with detergents or ultrasound, thus indicating that the active site of pyrophosphatase is localized in the matrix. The initial rates of PPi hydrolysis of toluene-permeabilized mitochondria and purified pyrophosphatase were found to depend, in a similar manner, on PPi and Mg2+ concentrations. The simplest model consistent with these data in both cases implies that the reaction proceeds via two pathways and requires MgPPi as substrate and at least one Mg2+ ion as activator. In the presence of 0.4 mM Mg2+ (physiological concentration) the inhibition constant for Ca2+ is 12 microM and the enzyme activity is no less than 50% of the maximal one. The data obtained suggest that the activity of pyrophosphatase in mitochondria is high enough to keep free PPi concentration at a level close to the equilibrium one.  相似文献   

4.
In this work the two interconvertible forms of inorganic pyrophosphatase (EC 3.6.1.1) of Streptococcus faecalis were shown to differ in kinetics. The highly active form of the enzyme was more sensitive to the changes in the Mg2+ concentration, and thus also more sensitive to the inhibition caused by ATP, which competes with PPi for the chelation of Mg2+ ions. We have previously described a kinetic model for the less-active form of S. faecalis inorganic pyrophosphatase [Lahti & Jokinen (1985) Biochemistry 24, 3526-3530]. The kinetic model of the highly active enzyme form is proposed to be a modification of the model of the less-active form in which enzyme activation by free Mg2+ is necessary for the reaction to occur. In this model the enzyme exists in two states, referred to as R- and T-states. In the absence of ligands the enzyme is in the T-state. R-state, i.e. the catalytically active state, exists only in the presence of free Mg2+. Mg1PPi2- is the primary substrate, and free pyrophosphate is a weak inhibitor that cannot serve as a substrate for the highly active form of S. faecalis inorganic pyrophosphatase. This model closely resembles that previously presented for yeast inorganic pyrophosphatase.  相似文献   

5.
Dissociation of Mg2+ from one of the two metal-binding sites whose occupancy is absolutely required for catalysis by rat liver inorganic pyrophosphatase is a slow reaction (tau 1/2 = 3 h). Polycarboxylic Mg2+ complexons markedly accelerate this process due to their binding with Mg2+ on the enzyme. PPi, ATP and a number of diphosphonate analogs of PPi also bind with Mg2+ on the enzyme with concomitant decrease in enzyme activity by 75% but do not release the bound Mg2+. The resulting ternary complex rapidly (tau 1/2 of several seconds) dissociates upon dilution into substrate-free medium. PPi and imidodiphosphate, which are substrates for pyrophosphatase, decrease the rate of reactivation by at least two orders of magnitude. The results can be explained by existence of two interconvertible forms of the enzyme, of which one is inactive and is stabilized by substrate or its analogs.  相似文献   

6.
Extracellular inorganic pyrophosphate (PPi) is important in the regulation of mineralisation of bone, and in the pathogenesis of chondrocalcinosis, an arthritic disease in which calcium pyrophosphate dihydrate crystals form in articular cartilage. Nucleoside-triphosphate pyrophosphatase, which catalyses the formation of PPi, was previously observed at the surface of human articular chondrocytes in culture. A similar enzyme has been identified in osteoblast-like human bone cells in culture, and is active towards purine and pyrimidine nucleoside triphosphates. The enzyme has high affinity for ATP and is located on the cell surface, and thus could serve in the generation of extracellular PPi. Moreover, no other mechanism for the catabolism of small amounts of exogenous ATP is present in human bone cells. Further evidence for ecto-nucleoside-triphosphate pyrophosphatase serving in the generation of extracellular PPi in articular cartilage and bone was obtained by studying the ability of alternative substrates (which do not yield PPi) to inhibit generation of PPi from ATP. In both articular chondrocytes and bone cells, the enzyme exhibited an apparent preference for ATP over dinucleotide and phosphodiester substrates. Some potential inhibitors of the enzyme activity were also studied in both cell types. ADP moderately inhibited the activity but two bisphosphonate drugs were only slightly inhibitory.  相似文献   

7.
植物焦磷酸酶(PPase)的研究进展   总被引:4,自引:0,他引:4  
植物焦磷酸酶(PPase)可分为存在于细胞质中可溶性的无机焦磷酸酶和与膜结合的不可溶性焦磷酸酶.后者不仅能水解焦磷酸,同时还具有质子泵的功能.橡胶树乳管中与黄色体膜结合的不可溶性焦磷酸酶,是调控橡胶生物合成的一个必不可少的酶.对植物焦磷酸酶的结构及其功能和分子生物学研究的进展进行了综合论述,并着重阐述了焦磷酸酶在橡胶树橡胶生物合成中的作用.  相似文献   

8.
We have developed two methods for quantitatively measuring inorganic pyrophosphate (PPi) in the presence of 10(3)--10(4) molar excesses of inorganic phosphate (Pi) and used them to measure the extent of enzyme-bound pyrophosphate (EPPi) formation in solutions of yeast inorganic pyrophosphatase and Pi. We have also measured the rate of enzyme-catalyzed H2O--phosphate oxygen exchange. We find both processes to have essentially identical dependence on Mg2+ and Pi concentrations, thus providing important confirmation for the recent proposal by Janson et al. (1979) that oxygen exchange proceeds via EPPi formation. Our results are consistent with a model in which three Mg2+ per active site are required for EPPi formation but inconsistent with a model requiring only two Mg2+ per active site and permit the formulation of an overall scheme for inorganic pyrophosphatase catalysis of PPi--Pi equilibration as well as the evaluation of equilibrium and rate constants in this scheme. The major results and conclusions of our work are the following: (a) the equilibrium constant for PPi (enzyme-bound) in equilibrium with 2Pi (enzyme-bound) is 4.8; (b) following PPi hydrolysis, the first released Pi contains an oxygen from solvent water; (c) the steps for PPi hydrolysis on the enzyme and for release of both product Pi's are all partially rate determining in overall enzyme-catalyzed PPi hydrolysis; (d) PPi formation on the enzyme is rate determining for H2O--Pi oxygen exchange; (e) PPi dissociation from the enzyme is very slow and is the rate-determining step in Pi--PPi exchange (Cohn, 1958; Janson et al., 1979). This also accounts for the observation that the calculated dissociation constant for MgPPi complex binding to enzyme is considerably lower than the measured Km for enzyme-catalyzed MgPPi hydrolysis.  相似文献   

9.
Chao TC  Huang H  Tsai JY  Huang CY  Sun YJ 《Proteins》2006,65(3):670-680
Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of pyrophosphate (PPi) to orthophosphate (Pi) and controls the level of PPi in cells. PPase plays an essential role in energy conservation and provides the energy for many biosynthetic pathways. The Helicobacter pylori pyrophosphatase (HpPPase) gene was cloned, expressed, purified, and found to have a molecular weight of 20 kDa. The K(m) and V (max) of HpPPase were determined as 214.4 microM and 594 micromol Pi min(-1) mg(-1), respectively. PPi binds Mg(2+) to form a true substrate that activates the enzyme. However, free PPi could be a potent inhibitor for HpPPase. The effects of the inhibitors NaF, ATP, iminodiphosphate, and N-ethylmaleimide on HpPPase activity were evaluated. NaF showed the highest inhibition of the enzyme. Crystal structures of HpPPase and the PPi-HpPPase complex were determined. HpPPase comprises three alpha-helices and nine beta-strands and folds as a barrel structure. HpPPase forms a hexamer in both the solution and crystal states, and each monomer has its own PPi-binding site. The PPi binding does not cause a significant conformational change in the PPi-HpPPase complex, which might represent an inhibition state for HpPPase in the absence of a divalent metal ion.  相似文献   

10.
Yeast inorganic pyrophosphatase, with 10 mM 32Pi and 10 mM Mg2+ present at pH 7.3 TO 7.6, rapidly forms enzyme-bound pyrophosphate equivalent to about 5% of the total catalytic sties on the two enzyme subunits. The enzyme thus appears to bind PPi so as to favor thermodynamically its formation from Pi. The enzyme catalyzes a measurable equilibrium formation of free PPi at a much slower rate. Under similar conditions, the enzyme catalyzes a rapid exchange of oxygen atoms between Pi and water with the relative activation by metals being Mg2+ greater than Zn2+ greater than Co2+ greater than Mn2+. Millisecond mixing and quenching experiments demonstrate that the rate of formation and cleavage of the enzyme-bound PPi is rapid enough to explain most or all of the oxygen exchange reaction.  相似文献   

11.
Magnesium-supported PPi hydrolysis by the mutant Asp-67Asn E. coli pyrophosphatase at saturating PPi and metal-activator concentrations in the presence of NaF is followed by a gradual decrease in the initial rate of PPi hydrolysis. The reaction occurs in two steps: first a complex containing enzyme, pyrophosphate, magnesium, and fluoride ions is immediately formed, then its conformation changes slowly. This enzyme--substrate complex stabilized by fluoride is partially active and can be isolated by the removal of excess fluoride by gel-filtration.  相似文献   

12.
Inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) from human erythrocyte hemolysates has been purified up to 10 000-fold. The purified enzyme is homogenous and has a specific activity of 79.75 mumol PPi hydrolysed.min-1.mg-1 at pH 8 and 37 degrees C. It was confirmed that it is a dimer with a molecular weight of 42 000, composed of two identical protomers. From kinetic studies, it is proposed that human erythrocyte inorganic pyrophosphatase activity depends on free Mg2+ concentration in different ways. This ion constitutes part of the substrate (the Mg.PPi complex; Km = 1.4.10(-4) M) and probably acts as an allosteric activator (kinetic activation constant: KMg2+a = 7.5.10(-4) M). Equilibrium binding studies performed in the absence of PPi showed 4 binding sites for Mg2+, all having the same high affinity (dissociation constant: KMg2+d = 4.10(-6) M). Since the concentration of free Mg2+ in red blood cells is very low and may vary with the oxygenation state, it is likely that in vivo erythrocyte pyrophosphatase activity is regulated.  相似文献   

13.
The topography and oligomeric structure of the vacuolar membrane-bound inorganic pyrophosphatase (73,000 daltons) of mung bean were studied. When the vacuolar membranes were treated with thiocyanate or sodium carbonate which are known to remove the peripheral membrane proteins, the enzyme could not be detected in the solubilized fraction by the specific antibody. The apparent molecular size of the enzyme was estimated to be about 480 kDa by polyacrylamide gel electrophoresis in the presence of Triton X-100. Crosslinking treatment of the pyrophosphatase with dimethyl suberimidate produced a complex corresponding to the dimer. The rate of PPi hydrolysis showed a sigmoidal relationship to substrate concentration with a Hill coefficient of 2.5. These results suggest that the vacuolar pyrophosphatase is an integral membrane protein and functions as an oligomer, probably a dimer.  相似文献   

14.
Openreading frame mj0608 of the Methanococcus jannaschii genome, recognized by its sequence similarity to that of the gene coding for class C inorganic pyrophosphatase in Bacillus subtilis, was cloned and over-expressed in Escherichia coli. The protein was purified and characterized by SDS-PAGE, M(r), and N-terminal sequence. Under suitable conditions it catalyzed the specific hydrolysis of PPi at about 600 micromol x min(-1) x mg(-1) at 25 degrees C, and at 8000 micromol x min(-1) x mg(-1) at 85 degrees C. Therefore this protein is a specific inorganic pyrophosphatase. The activities of Mg(2+), Mn(2+), Co(2+), and Zn(2+) ions as cofactors for hydrolysis of PPi were compared at pH 7.5 and 9.0. Unlike the class C pyrophosphatase of B. subtilis, this enzyme required no prior activation by low concentrations of Mn(2+) or Co(2+) ions. However, prior exposure to these ions afforded striking protection against inhibition by sodium fluoride, to which the enzyme was otherwise very sensitive.  相似文献   

15.
The effects of lipids on the activity of soluble and membrane-bound pyrophosphatase from beef heart mitochondria were studied. An addition of total mitochondrial lipid, phosphatidyl choline, phosphatidyl ethanolamine or cardiolipin resulted in stimulation of the enzymatic activity and an increase in thermal stability of the soluble enzyme. The maximal activating effect was exerted by the total mitochondrial lipid and phosphatidyl choline. The electrophoretic data suggest that phosphatidyl choline is a component of membrane pyrophosphatase. Preincubation of the soluble enzyme with phosphatidyl choline converted the enzyme into a membrane form, which is capable to carry out the energy-dependent synthesis of PPi in submitochondrial particles.  相似文献   

16.
A scheme of interactions of Mg2+ ions and their 1:1 complex with PPi (PPiMg') with two forms of inorganic pyrophosphatase isolated from beef heart mitochondria has been deduced from the analysis of enzyme kinetics at pH varying from 5.6 to 8.5. The scheme implies the existence of two catalytically important metal-binding sites on the enzyme. The two enzyme forms differ in maximal velocity and affinity for the metal activator. The pH dependence of kinetic parameters suggests that the active form of the substrate is MgP2O2-7. Ca2+ ions strongly inhibit pyrophosphatase activity and the corresponding Hill coefficient is 1.5. Phosphate and ATP are weak inhibitors of pyrophosphatase of the competitive and noncompetitive type respectively. The results show that these forms of mitochondrial pyrophosphatase are similar to pyrophosphatases isolated from other sources.  相似文献   

17.
1. The pyrophosphatase activity in cytosolic and mitochondrial fractions of rat liver was 1.7 and 0.26 units/mg of protein respectively when assayed at 37 degrees C in the presence of physiological [Mg2+] (0.3 mM). 2. Approx. 80% of the mitochondrial pyrophosphatase was inaccessible to extramitochondrial PPi, of which 40% represented soluble matrix enzyme (0.38 unit/mg of matrix protein). 3. Ca2+ inhibited the soluble matrix enzyme; the effective K0.5 for inhibition increased as [Mg2+], an essential cofactor of the enzyme, increased. Measured values were 0.39, 1.15, 3.7, 8.3 and 12.5 microM at 0.04 mM-, 0.1 mM-, 0.3 mM-, 0.6 mM- and 1 mM-Mg2+ respectively. 4. The data were analysed by a kinetic model similar to that for yeast pyrophosphatase, which assumes the substrate to be MgPPi (Km 5 microM) with Mg2+ also activating at an additional site (K0.5 23 microM). Ca2+ inhibits through the formation of CaPPi, a strong competitive inhibitor (Ki 0.067 microM). 5. Heart mitochondria also contain a soluble matrix pyrophosphatase of similar activity to that of liver mitochondria and with the same sensitivity to [Ca2+]. 6. The data provide an explanation for the increase in mitochondrial PPi, mediated by Ca2+, which is responsible for the increase in matrix volume induced by gluconeogenic hormones [Davidson & Halestrap (1988) Biochem. J. 254, 379-384].  相似文献   

18.
A one-step procedure for the detection of Pi-producing enzymes in polyacrylamide and agarose gels was developed using PPi hydrolysis by inorganic pyrophosphatase as a model reaction. The color reagent consists of acid molybdate, methyl green, and Triton X-305 and produces sharp greenish-blue bands in places of Pi accumulation. The color is stable and its intensity is linearily related to enzyme amounts in the gel.  相似文献   

19.
Nucleoside triphosphate pyrophosphohydrolase (EC 3.6.1.8) activity is associated with matrix vesicles purified from collagenase digests of fetal calf epiphyseal cartilage. This enzyme hydrolyzes nucleoside triphosphates to nucleotides and PPi, the latter inducing precipitation in the presence of Ca2+ and Pi. An assay for matrix vesicle nucleoside triphosphate pyrophosphohydrolase is developed using beta, gamma-methylene ATP as substrate. The assay is effective in the presence of matrix vesicle-associated ATPase, pyrophosphatase, and alkaline phosphatase activities. A soluble nucleoside triphosphate pyrophosphohydrolase is obtained from matrix vesicles by treatment with 5 mM sodium deoxycholate. The solubilized enzyme induced the precipitation of calcium phosphate in the presence of ATP, Ca2+, and Pi. Extraction of deoxycholate-solubilized enzymes from matrix vesicles with 1-butanol destroys nucleoside triphosphate pyrophosphohydrolase activity while enhancing the specific activities of ATPase, pyrophosphatase, and alkaline phosphatase. In solutions devoid of ATP and matrix vesicles, concentrations of PPi between 10 and 100 microM induce calcification in mixtures containing initial Ca2+ X P ion products of 3.5 to 7.9 mM2. This finding plus the discovery of nucleoside triphosphate pyrophosphohydrolase in matrix vesicles supports the view that these extracellular organelles induce calcium precipitation by the enzymatic production of PPi. Nucleoside triphosphate pyrophosphohydrolase is more active against pyrimidine nucleoside triphosphates than the corresponding purine derivatives. The pH optimum is 10.0 and the enzyme is neither activated nor inhibited by Mg2+ or Ca2+ ions or mixtures of the two. Vmax at pH 7.5 for beta, gamma-methylene ATP is 0.012 mumol of substrate hydrolyzed per min per mg of protein and Km is below 10 microM. The enzyme is irreversibly destroyed at pH 4 and is stable at pH 10.5.  相似文献   

20.
1. An active monomeric form of inorganic pyrophosphatase from baker's yeast was prepared by maleylation of the protein at pH 10.5. 2. The dimeric and monomeric pyrophosphatase bound at non-catalytic sites 0.5 and 1.0 mol of slowly dissociating Pi per mol subunit, respectively. This stoichiometry was not affected on active site blockage with PPi. 3. Added Pi accelerated the dissociation of Pi from the dimeric but not monomeric enzyme. 4. Our results indicate a strong interaction to occur between the non-catalytic sites of two subunits of native pyrophosphatase which results in diminished stability of Pi binding to one of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号