首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prior to birth the fetus of the rat accumulates large quantities of hepatic glycogen, with these stores mobilized as glucose in the early postnatal period to sustain the newborn until the onset of suckling and gluconeogenesis. The liver acts to mobilize glycogen in the early neonatal period and gradually adjusts to the alternating supply of nutrients that results from the onset of a feeding cycle. Early postnatal glycogen mobilization is reflected in the decreased active form of glycogen synthase (GS), the rate-limiting enzyme of glycogenesis, and increased activation of glycogen phosphorylase (GP), the rate-limiting enzyme of glycogenolysis. Levels of smooth endoplasmic reticulum (SER)-associated synthase phosphatase and phosphorylase phosphatase activities are diminished from high prenatal levels, contributing to these changes in activation of GS and GP. With the onset of suckling at 1-4 h after birth the liver again accumulates small quantities of glycogen. The period of 6 to 12 h after birth is characterized by large scale glycogenolysis. Glycogen levels are again increased at 24 h after birth, reflecting hepatic adaptation to the onset of meal feeding.  相似文献   

2.
Metabolic changes during the transition from post-feeding to fasting were studied in Brycon cephalus, an omnivorous teleost from the Amazon Basin in Brazil. Body weight and somatic indices (liver and digestive tract), glycogen and glucose content in liver and muscle, as well as plasma glucose, free fatty acids (FFA), insulin and glucagon levels of B. cephalus, were measured at 0, 12, 24, 48, 72, 120, 168 and 336 h after the last feeding. At time 0 h (the moment of food administration, 09.00 h) plasma levels of insulin and glucagon were already high, and relatively high values were maintained until 24 h post-feeding. Glycemia was 6.42+/-0.82 mM immediately after food ingestion and 7.53+/-1.12 mM at 12 h. Simultaneously, a postprandial replenishment of liver and muscle glycogen reserves was observed. Subsequently, a sharp decrease of plasma insulin occurred, from 7.19+/-0.83 ng/ml at 24 h of fasting to 5.27+/-0.58 ng/ml at 48 h. This decrease coincided with the drop in liver glucose and liver glycogen, which reached the lowest value at 72 h of fasting (328.56+/-192.13 and 70.33+/-14.13 micromol/g, respectively). Liver glucose increased after 120 h and reached a peak 168 h post-feeding, which suggests that hepatic gluconeogenesis is occurring. Plasma FFA levels were low after 120 and 168 h and increased again at 336 h of fasting. During the transition from post-feeding to fast condition in B. cephalus, the balance between circulating insulin and glucagon quickly adjust its metabolism to the ingestion or deprivation of food.  相似文献   

3.
The hyperinsulinaemic-glucose-clamp technique, in combination with measurement of glucose turnover in conscious unrestrained rats, was used to assess the effects of nutritional status on insulin sensitivity in vivo and glucose metabolism. Liver, heart and quadriceps skeletal-muscle glycogen content and activities of pyruvate dehydrogenase (PDH) and glycogen synthase were measured both basally and at the end of a 2.5 h glucose clamp (insulin 85 munits/h) in rats 6, 24 and 48 h after food withdrawal. Clamp glucose requirement and glucose turnover were unchanged by fasting. Activation of glycogen synthase and glycogen deposition in liver and skeletal muscle during the clamps were also not impaired in rats after a prolonged fast. By contrast with skeletal muscle, activation of cardiac-muscle glycogen synthase and glycogen deposition during the clamps were markedly impaired by 24 h of fasting and were undetectable at 48 h. Skeletal-muscle PDH activity fell with more prolonged fasting (6 h, 15.3 +/- 3.4%; 24 h, 4.7 +/- 0.7%; 48 h, 4.3 +/- 0.6% active; P less than 0.005), but at 24 and 48 h was stimulated by the clamp to values unchanged by the duration of fasting. Stimulation of cardiac PDH activity by the clamp was, however, impaired in rats fasted for 24 or 48 h. Basal hepatic PDH did not change significantly with fasting (6 h, 5.3 +/- 1.1%; 24 h, 4.6 +/- 0.7%; 48 h, 3.9 +/- 0.5%), and, although it could be partly restored at 24 h, very little stimulation occurred at 48 h. Hepatic pyruvate kinase and acetyl-CoA carboxylase activity were both stimulated by the clamps, and this was not impaired with more prolonged fasting. During the glucose clamps, blood concentrations of lactate, pyruvate and alanine were increased to a greater extent in rats fasted for 24 and 48 h than in rats studied 6 h after food withdrawal. The findings suggest that, although sensitivity to insulin of whole-body glucose disposal is unchanged with fasting, there may be qualitative differences in the metabolism of glucose.  相似文献   

4.
The effects of food deprivation on body weight, liver weight, hepatic glycogen content, glycogenolytic enzymes and blood metabolites were compared in young and old phosphorylase b kinase-deficient (gsd/gsd) rats. Although the concentration of glycogen in liver from 9-week-old female gsd/gsd rats (730 mumol of glucose equivalents/g wet wt.) was increased by 7-8% during starvation, total hepatic glycogen was decreased by 12% after 24 h without food. In 12-month-old male gsd/gsd rats the concentration of liver glycogen (585 mumol of glucose equiv./g wet wt.) was decreased by 16% and total hepatic glycogen by nearly 40% after food deprivation for 24 h. Phosphorylase b kinase and phosphorylase a were present at approx. 10% of the control activities in 9-week-old gsd/gsd rats, but both enzyme activities were increased more than 3-fold in 12-month-old affected rodents. It is concluded that the age-related ability to mobilize hepatic glycogen appears to result from the augmentation of phosphorylase b kinase during maturation of the gsd/gsd rat.  相似文献   

5.
The effects of feeding with a histidine-excess diet and subsequent starvation on liver and muscle glycogen, and on serum glucose were investigated in young and adult rats.

Feeding with a histidine-excess diet resulted in the accumulation of liver glycogen in both young and adult rats. The hepatic glycogen continued to decrease during starvation, and the liver became almost totally depleted of glycogen after starvation for 48 hr. Glycogen in the liver of young rats starved for 24 hr after previous feeding with a histidine-excess diet was significantly higher than that of young rats starved for 24 hr after previous feeding with a basal diet.

Muscle glycogen after feeding and subsequent starvation was not affected by the types of diets fed previously, muscle glycogen during starvation showing a slight decrease in young rats and a slight increase in adult rats.

Feeding with a histidine-excess diet caused a significant decrease of serum glucose in young rats, but not in adult rats. Serum glucose in young rats was markedly reduced by starvation after previous feeding with a basal diet, but not after previous feeding with a histidine-excess diet. In adult rats, there were no changes in serum glucose between rats starved after feeding with either a basal diet or a histidine-excess diet, and serum glucose was decreased slightly by starvation after feeding with the test diets.

The overall results indicate that the maintenance of serum glucose in young rate even during starvation after previous feeding with a histidine-excess diet might be partially concerned with the export of glucose from the accumulated glycogen in the liver due to the diet.  相似文献   

6.

Background

Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood.

Methods

Using chronic low-frequency stimulation (CLFS) as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest.

Results

In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 5′-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels.

Conclusions

Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches.  相似文献   

7.
The effects on newly-hatched turkey poults of feeding diets with varying levels of carbohydrate and of oral gavage with suspensions of corn starch were studied. Feeding lowered hepatic glucose-6-phosphatase activity and raised blood glucose and hepatic glycogen concentrations. In Nicholas strain turkeys, increases of dietary levels of carbohydrate enhanced hepatic glycogen stores without affecting blood glucose concentration or glucose-6-phosphatase activity. Oral gavage of poults with suspensions of corn starch in water raised blood glucose and hepatic glycogen concentrations and lowered glucose-6-phosphatase activity in dose- and time-dependent manners. Changes were noted at 1 hr post-gavage. Oral gavage with starch lowered lactate concentrations in muscle and plasma and lowered plasma concentrations of β-hydroxybutyrate and urate. Plasma concentrations of pyruvate appeared to decline with post-hatch holding without feed. Thus, the apparent effect of starch gavage on plasma pyruvate (high concentration) is dependent upon the length of the holding period for the controls. The data show that poults can alter their metabolism (decrease lipid oxidation and gluconeogenesis and increase carbohydrate stores) almost immediately (1 hr) after oral administration of carbohydrate.  相似文献   

8.
The effect of a high-carbohydrate meal 4 h before 105 min of exercise at 70% of maximal O2 uptake was determined in seven endurance-trained cyclists and compared with exercise following a 16-h fast. The preexercise meal produced a transient elevation of plasma insulin and blood glucose, which returned to fasting basal levels prior to the initiation of exercise. The meal also resulted in a 42% elevation (P less than 0.05) of glycogen within the vastus lateralis at the beginning of exercise. The 1st h of exercise when subjects were fed was characterized by a 13-25% decline (P less than 0.05) in blood glucose concentration, a suppression of the normal increase in plasma free fatty acids and blood glycerol, and a 45% (P less than 0.05) greater rate of carbohydrate oxidation compared with exercise when subjects were fasted. After 105 min of exercise, there were no significant differences when subjects were fed or fasted regarding blood glucose levels, rate of carbohydrate oxidation, or muscle glycogen concentration. The greater muscle glycogen utilization (97 +/- 18 vs. 64 +/- 8 mmol glucosyl units X kg-1; P less than 0.05) and carbohydrate oxidation when subjects were fed appeared to be derived from the glycogen synthesized following the meal. These results indicate that preexercise feedings alter substrate availability despite a return of plasma insulin to fasting levels prior to exercise and that these effects persist until the 2nd h of exercise.  相似文献   

9.
Young rabbits (Oryctolagus cuniculus) are only nursed for 3–5 min every 24 h. They show a circadian increase in activity in anticipation of this, which is entrained by suckling. Our aim was to determine whether serum and liver metabolites show diurnal fluctuations which could act to regulate this circadian pattern. Stomach weight, liver glycogen and serum metabolites were measured every 3 h in 7- to 8-day-old pups when normally nursed (up to 24 h after suckling) and fasted (up to 48 h after suckling). The results suggest: Accepted: 9 October 1999  相似文献   

10.
Chronic ethanol ingestion by rats exerts almost no effect on the diurnal rhythms of the blood and hepatic glucose concentrations. The rhythm of liver glycogen alters substantially in ethanol-fed animals, the phase of the rhythm being shifted and the daily mean level of glycogen being reduced by a factor of 2. Much more drastic disturbances in carbohydrate metabolism occur after ethanol withdrawal than with ethanol consumption. The diurnal rhythm of liver glycogen becomes inverted in phasing, and the rhythmic amplitude reduced greatly as compared with controls. Both the blood and hepatic glucose concentrations are maintained at nearly constant levels for 18-21 h after ethanol withdrawal, but then the level of blood glucose sharply falls, while that of hepatic glucose somewhat increases. The liver cytosolic water/blood plasma water gradient of glucose 24 h after ethanol withdrawal achieves a value of 4 and remains low 24 h later. The liver glycogen level remains relatively high over the 24 h period after ethanol withdrawal despite the severe hypoglycemia, that can be a result of a limitation of the liver cell membrane permeability for glucose.  相似文献   

11.
This study explored the effects of fasting on body fuel mobilization in the common vampire bat (Desmodus rotundus) fed a high-protein diet (bovine blood). An uncommon fragility during food deprivation has been reported for this species to the point of untimely deaths after only 2–3 nights of fasting. The immediate biochemical responses to fasting, however, have not been established. Thus, blood glucose, plasma FFA, glycogen, protein, and fat concentrations in the liver and muscles were determined in fed and 24-, 48- and 72 h-fasted individuals. The results indicate that D. rotundus is unable to maintain adequate levels of blood glucose during fasting, probably due to low tissue stores of energy fuels or difficulty in mobilizing them. Other factors may play an important role in this species abundance, such as the previously reported behavior of reciprocal blood regurgitation.Abbreviations FFA free fatty acids - F24 24 hours-fasted bats - F48 48 hours-fasted bats - F72 72 hours-fasted batsCommunicated by: L.C.-H. Wang  相似文献   

12.
The compensatory changes of carbohydrate metabolism induced by fasting were investigated in frugivorous bats, Artibeus lituratus and Artibeus jamaicensis. For this purpose, plasma levels of glucose and lactate, liver and muscle glycogen content, rates of liver gluconeogenesis and the activity of related enzymes were determined in male bats. After a decrease during the first 48 h of fasting, plasma glucose levels remained constant until the end of the experimental period. Plasma lactate levels, extremely high in fed bats, decreased after 48 h of fasting. Similarly, liver glycogen content, markedly high in fed animals, was reduced to low levels after 24 h without food. Muscle glycogen was also reduced in fasted bats. The expected increase in liver gluconeogenesis during fasting was observed after 48 h of fasting. The activities of liver glucose-6-phosphatase and fructose-1,6-bisphosphatase were not affected by food withdrawn. On the other hand, fasting for 24 h induced an increase in the activity of liver cytosolic phosphoenolpyruvate carboxykinase. The data indicate that liver gluconeogenesis has an important role in the glucose homeostasis in frugivorous bats during prolonged periods of food deprivation. During short periods of fasting liver glycogenolysis seems to be the main responsible for the maintenance of glycemia.  相似文献   

13.

Objective

To investigate the changes in the currents of voltage-dependent calcium channels (VDCCs) in smooth muscle cells of basilar artery in a rabbit model of subarachnoid hemorrhage (SAH).

Methods

New Zealand white rabbits were randomly divided into five groups: sham (C), normal (N), 24 hours (S1), 48 hours (S2) and 72 hours (S3) after SAH. Non-heparinized autologous arterial blood (1ml/kg) was injected into the cisterna magna to create SAH after intravenous anesthesia, and 1 ml/kg of saline was injected into cisterna magna in the sham group. Rabbits in group N received no injections. Basilar artery in S1, S2, S3 group were isolated at 24, 48, 72 hours after SAH. Basilar artery in group C was isolated at 72 hours after physiological saline injection. Basilar artery smooth muscle cells were isolated for all groups. Whole-cell patch-clamp technique was utilized to record cell membrane capacitance and VDCCs currents. The VDCCs antagonist nifedipine was added to the bath solution to block the Ca++ channels currents.

Results

There were no significant differences in the number of cells isolated, the cell size and membrane capacitance among all the five groups. VDCC currents in the S1–S3 groups had higher amplitudes than those in control and sham groups. The significant change of current amplitude was observed at 72 hours after SAH, which was higher than those of 24 and 48 hours. The VDCCs were shown to expression in human artery smooth muscle cells.

Conclusions

The changes of activation characteristics and voltage-current relationship at 72 hours after SAH might be an important event which leads to a series of molecular events in the microenvironment of the basilar artery smooth muscle cells. This may be the key time point for potential therapeutic intervention against subarachnoid hemorrhage.  相似文献   

14.
Glycogen stores (liver and carcass) have been studied in lean and obese Zucker rats. The animals were submitted to one of three feeding conditions: ad libitum, a 48-h fast, or a 48-h fast and food ad libitum for 24 h, and to two environmental conditions, either thermoneutrality or an acute cold exposure (2 days at 4-7 degrees C). After a 2-day fast at 25 degrees C, the liver glycogen store was reduced by 45 times in the lean rats, while it was decreased by only 3 times in the obese rats. Under these conditions, the liver glycogen store was 45 times higher in the obese than in the lean rats. After 2 days in the cold, liver glycogen store was 4.4 times higher in obese rats than in lean rats. After a 2-day fast in the cold, the liver glycogen store in the obese rats was 30 times higher than in the lean rats. In comparison to fasting at thermoneutrality, fasting in the cold did not lead to a further reduction in hepatic glycogen in obese Zucker rats. The differences observed in the mobilization of the hepatic glycogen store between obese and lean rats have not been found in the mobilization of the carcass glycogen store. Drastic conditions, such as a 2-day fast in the cold, did not exhaust the glycogen store in obese Zucker rats. The present observations point out that obese Zucker rats cannot mobilize the entire hepatic glycogen store, as seen in lean control rats. The role of this abnormality in the high hyperlipogenesis that maintains the obese state is still to be evaluated.  相似文献   

15.
The rates of glucose production from various substrates entering gluconeogenesis at different steps were investigated in hepatocytes isolated from term-fetus and newborn rabbits fasted during the first 2 days of life. The data were compared to the rate of glucose production measured in hepatocytes from young rabbits (50-60 days) starved for 48 h. The net production of glucose from substrates (lactate, pyruvate, propionate, alanine) entering gluconeogenesis below phosphoenolpyruvate was very low at birth and increased during the first day of life, in relation with an increased cytosolic phosphoenolpyruvate carboxykinase activity. The net production of glucose from precursors entering gluconeogenesis at the level of triose phosphates (dihydroxyacetone, fructose) was low at birth but a maximal capacity for gluconeogenesis was reached within 6 h after birth. This enhanced gluconeogenic capacity was associated with a fall in hepatic fructose 2,6-bisphosphate concentration and a reduced glycolytic flux. In contrast, a high glucose production from galactose was already present at birth and did not rise at 24 or 48 h after delivery. These results suggest that the development of gluconeogenic capacity in hepatocytes isolated from newborn rabbit is dependent upon two factors, a decrease in the F2,6-P2 concentration which reduces the glycolytic flux and an increase in the activity of cytosolic phosphoenolpyruvate carboxykinase.  相似文献   

16.
To explore the possible role of gap junctions in neural regulation of hepatic glucose metabolism, the effects of hepatic nerve stimulation on metabolic and hemodynamic changes were examined in normal and regenerating rat liver which was perfused in situ at constant pressure via the portal vein with a medium containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. 1. The content of connexin 32, a major component of gap junctions in rat liver, decreased transiently to about 25% of the control level in regenerating liver 48-72 h after partial hepatectomy and recovered to normal by the 11th day after the operation. 2. In normal liver, electrical stimulation of the hepatic nerves (10 Hz, 20 V, 2 ms) and infusion of noradrenaline (1 microM) both increased glucose and lactate output and reduced perfusion flow. 3. In early stage of regenerating liver 48 h and 72 h after partial hepatectomy, the increase in glucose output in response to nerve stimulation was almost completely inhibited, whereas the change in lactate balance was partially suppressed and the reduction of flow rate was retained. The response of glucose output to nerve stimulation recovered by the 11th day after partial hepatectomy. In contrast, exogenous application of noradrenaline increased glucose output even in the early stage of regenerating liver. 4. The increase in noradrenaline overflow during hepatic nerve stimulation in the early stage of regenerating liver was approximately the same as in normal liver. Liver glycogen was sufficiently preserved in the early stage of regenerating liver. However, noradrenaline infusion could no more increase glucose output both in normal and in regenerating livers after 24 h of fasting that depleted liver glycogen. These results suggest that the impaired effects of sympathetic nerve stimulation on glucose metabolism observed in regenerating liver are derived neither from reduced release of noradrenaline nor from depletion of liver glycogen, but rather from transient reduction of gap junctions which assist signal propagation of the nerve action through intercellular communication in rat liver.  相似文献   

17.
Regulatory functions of glycogen stores and blood glucose on human appetite, particularly relating to exercise, are not fully understood. Ten men (age 20-31 yr) performed glycogen-depleting exercise in an evening, ate a low-carbohydrate dinner, and stayed overnight in the laboratory. The next day, blood glucose was monitored continuously for 517 +/- 23 (SE) min. Subjects had access to high-fat and high-carbohydrate foods after baseline glucose and respiratory quotient were determined. In the afternoon, 1 h of moderate exercise was performed. Baseline respiratory quotient was 0. 748 +/- 0.008, plasma free fatty acids were 677 +/- 123 micromol/l, insulin was 4.8 +/- 0.5 microU/ml, and leptin was 1.9 +/- 0.3 ng/ml. Postabsorptively, 8 of 10 meals were initiated during stability in blood glucose. Postprandially, the association between meal initiation and blood glucose declines became significant (chi(2) = 7. 82). During moderate exercise, blood glucose initially decreased but recovered before completion. When the glycogen buffer is depleted, meal initiation can occur during blood glucose stability; the relationship between blood glucose declines and meal initiation reestablishes with refeeding.  相似文献   

18.

Background  

The daily pattern of nursing of the rabbit pup by the doe is the most important event in the day for the newborn and is neatly anticipated by them. Such anticipation presumably needs a close correlation with changes in hormones that will allow the pups to develop an appropriate behavior. Although a number of circadian functions have been examined in newborn rabbits, there is no information on 24-h pattern of gonadotropin release or on possible sex-related differences in gonadotropin or prolactin (PRL) release of pups. This study examined the 24-h changes of plasma luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) in 11 days old suckling female and male rabbits left with the mother or after short-term (i.e., 48 h) doe-litter separation.  相似文献   

19.
The effects of acute alpha 1-adrenoceptor blockade with prazosin, beta 1-adrenoceptor blockade with atenolol, and nonselective beta-adrenoceptor blockade with propranolol were compared in a placebo-controlled crossover study of the hemodynamic and metabolic responses to acute exercise 2 h after prolonged prior exercise to induce skeletal muscle glycogen depletion, enhancing the dependence on hepatic glucose output and circulating free fatty acids (FFA). Plasma catecholamines were higher during exercise after, as opposed to before, glycogen depletion and were elevated further by all three drugs. Propranolol failed to produce a significant reduction in systolic blood pressure and elevated diastolic blood pressure. Atenolol reduced systolic blood pressure and did not change diastolic blood pressure. Both beta-blockers reduced FFA levels, but only propranolol lowered plasma glucose relative to placebo during exercise after glycogen depletion. In contrast, prazosin reduced systolic and diastolic blood pressures and resulted in elevated FFA and glucose levels. The results indicate important differences in the hemodynamic effects of beta 1-selective vs. nonselective beta-blockade during exercise after skeletal muscle glycogen depletion. Furthermore they confirm the importance of beta 2-mediated hepatic glucose production in maintaining plasma glucose levels during exercise. Acute alpha 1-blockade with prazosin induces reflex elevation of catecholamines, which in the absence of blockade of hepatic beta 2-receptors produces elevation of plasma glucose. The results suggest there is little role for alpha 1-mediated hepatic glucose production during exercise in humans.  相似文献   

20.
Glucose, glycogen, and insulin responses in the hypothermic rat   总被引:1,自引:0,他引:1  
J M Steffen 《Cryobiology》1988,25(2):94-101
The rat appears to be unable to utilize glucose during hypothermia. The objective of this study was to examine carbohydrate homeostasis during induction, hypothermia, and rewarming phases. Groups of normothermic animals were euthanized to serve as time controls for comparison. Hypothermia (15 degrees C) was produced by exposure to helox (80% helium:20% oxygen) at 0 +/- 1 degree C. Hyperglycemia was noted during the induction process (169 +/- 8 in control vs 326 +/- 49 mg/dl). Serum glucose increased further during 4 hr of hypothermia, but following rewarming (Tre of 33 +/- 1 degrees C) was reduced (153 +/- 16 mg/dl) significantly (P less than 0.05). Serum insulin was depressed during hypothermic induction (from 48 +/- 4 in controls to 19 +/- 3 microU/ml in hypothermic rats) and increased only slightly during the arousal process, remaining significantly lower than in normothermic subjects. Initial hepatic, skeletal muscle, and cardiac glycogen concentrations were reduced 34, 68, and 75%, respectively, during hypothermic induction. While liver glycogen decreased further during 4 hr of hypothermia, skeletal and cardiac stores increased markedly. During rewarming, hepatic glycogen was markedly decreased, while skeletal and cardiac stores were maintained. These data suggest that hyperglycemia in the hypothermic rat can be accounted for by glycogenolysis and hypoinsulinemia. In addition, this study indicates repletion of skeletal and cardiac muscle glycogen during maintained hypothermia and sparing of muscle glycogen during rewarming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号