首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
One of the major problems in the treatment of human cancer is the phenomenon of drug resistance. Increased glutathione (gamma-glutamylcysteinylglycine, GSH) conjugation (inactivation) due to elevated level of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) remains uncertain. In our experiments, a combination of liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between GSH and melphalan, one of the alkylating agents. The spontaneous reaction of 1mM melphalan with 5mM GSH at 37 degrees C in aqueous phosphate buffer for 1h gave primarily the monoglutathionyl and diglutathionyl melphalan derivatives, with small amounts of mono- and dihydroxy melphalan derivatives. We demonstrated that rat liver microsomal GST presented a strong catalytic effect on the reaction as determined by the increase of monoglutathionyl and diglutathionyl melphalan derivatives and the decrease of melphalan. We showed that microsomal GST was activated by melphalan in a concentration- and time-dependent manner. Microsomal GST which was stimulated approximately 1.5-fold with melphalan had a stronger catalytic effect. Thus microsomal GST may play a potential role in the metabolism of melphalan in biological membranes, and in the development of ADR.  相似文献   

3.
Clinical efficacy of alkylating anticancer drugs, such as chlorambucil (4-[p-[bis [2-chloroethyl] amino] phenyl]-butanoic acid; CHB), is often limited by the emergence of drug resistant tumor cells. Increased glutathione (gamma-glutamylcysteinylglycine; GSH) conjugation (inactivation) of alkylating anticancer drugs due to overexpression of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance to alkylating agents. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) to CHB remains uncertain. In our experiments, a combination of lipid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between CHB and GSH. The spontaneous reaction of 1mM CHB with 5 mM GSH at 37 degrees C in aqueous phosphate buffer for 1 h gave primarily the monoglutathionyl derivative, 4-[p-[N-2-chloroethyl, N-2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG) and the diglutathionyl derivative, 4-[p-[2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG2) with small amounts of the hydroxy-derivative, 4-[p-[N-2-S-glutathionylethyl, N-2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBSGOH), 4-[p-[bis[2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBOH2), 4-[p-[N-2-chloroethyl, N-2-S-hydroxyethyl]amino]phenyl]-butanoic acid (CHBOH). We demonstrated that rat liver microsomal GST presented a strong catalytic effect on these reactions as determined by the increase of CHBSG2, CHBSGOH and CHBSG and the decrease of CHB. We showed that microsomal GST was activated by CHB in a concentration and time dependent manner. Microsomal GST which was stimulated approximately two-fold with CHB had a stronger catalytic effect. Thus, microsomal GST may play a potential role in the metabolism of CHB in biological membranes, and in the development of ADR.  相似文献   

4.
5.
The simultaneous hydrolysis of L-glutamine and glutathione by rat kidney gamma-glutamyltransferase has been studied. At concentrations of the two substrates giving rates approximating to Vmax, it is shown that glutamine hydrolysis predominates. Under saturating conditions for both substrates, 65% of the glutamic acid produced is derived from glutamine. Using [14C]glutamine it is also shown that at physiological plasma concentrations of glutamine (in excess of 400 microM) and glutathione (20 microM) glutamine hydrolysis is the predominating reaction. We therefore suggest that both glutamine and glutathione are important in vivo donors for gamma-glutamyltransferase.  相似文献   

6.
7.
8.
Metabolism of exogenous glutathione was investigated in suspensions of freshly isolated rat small-intestinal mucosal cells. The cells catalyzed the oxidation of reduced glutathione (GSH) to glutathione disulfide (GSSG). Neither serine . borate nor methionine significantly influenced this reaction. Formed GSSG was further metabolized as indicated by its disappearance from the medium. Degradation of GSSG was stimulated by methionine and inhibited by serine . borate. Separation and identification of GSSG metabolites were achieved by high performance liquid chromatography. The results indicate that the preferred route for GSSG metabolism to the constituent amino acids in small intestine, is by hydrolytic removal of the two gamma-glutamyl groups of GSSG to yield cystinyl-bisglycine which is subsequently hydrolyzed to cystine. gamma-Glutamyltransferase activity was compared in isolated intestinal, kidney and liver cells using gamma-glutamyl-p-nitrocarboxyanilide as substrate. Kidney cells were approximately 5-fold and 150-fold more active than intestinal and liver cells, respectively. Serine . borate markedly inhibited, and glycyl-glycine stimulated, hydrolysis of gamma-glutamyl-p-nitrocarboxyanilide in all cell types confirming the involvement of gamma-glutamyltransferase in the reaction. The hydrolysis of gamma-glutamyl-p-nitrocarboxyanilide was inhibited to approximately the same extent by either GSH or GSSG suggesting that both compounds interact at the donor site of gamma-glutamyltransferase. Comparison of the rates of glutathione metabolism by isolated intestinal and kidney cells suggests that the intestinal contribution to the degradation of extracellular glutathione may be physiologically more important than has previously been assumed.  相似文献   

9.
Summary The purpose of this study was to try to differentiate histochemically between the various enzymes which may catalyze the hydrolysis of ATP in developing rat dental tissues. Freeze cut and freeze dried sections of molar and incisor teeth were incubated in lead capture-based media at pH 5.0, 7.2 or 9.4 with one of the following substrates: -glycerophosphate, AMP, ADP, ATP, AMP-PNP and tetrasodium pyrophosphate. To establish the enzymatic nature of the hydrolysis parallel sections were incubated after prior fixation in either formaldehyde or glutaraldehyde.By comparing the enzymatic stainings obtained with the various substrates and at the different pH: s, it was concluded that ATP can be visibly hydrolyzed in rat dental tissues by alkaline phosphatase (stratum intermedium, apical part of maturation ameloblasts, basal part of all ameloblasts, odontoblasts and subodontoblastic layer), specific ATPase (apical and basal parts of secretory ameloblasts) and ATP pyrophosphatase and/or adenylate cyclase (stratum intermedium, odontoblasts). Acid phosphatase, specific ADPase, 5-nucleotidase, inorganic pyrophosphatase, 3:5-cyclic-AMP-phosphodiesterase and adenylate kinase on the other hand, seem not to be engaged in the ATP hydrolysis to such a degree as to complicate the interpretation of the histochemical staining. The alkaline phosphatase part of the ATP hydrolysis appeared to be rather insensitive to aldehyde fixation, while the hydrolysis effected by specific ATPase and ATP pyrophosphatase and/or adenylate cyclase was extinguished after fixation with formaldehyde for 4 h or glutaraldehyde for 10 min.  相似文献   

10.
Summary The effect of EDTA-decalcification, reactivating and activating procedures on the hydrolysis of ATP was studied histochemically in developing dental tissues in the rat. The incubation media contained lead citrate at alkaline pH and lead nitrate at neutral pH, and the results with ATP as substrate were compared with those obtained with -glycerophosphate.The ion dependency of ATP hydrolysis could only be ascertained in decalcified sections. As in earlier studies on the hydrolysis of -glycerophosphate in dental tissues, this hydrolysis could readily be reactivated through preincubation of the sections in a series of 0.1 M solutions of divalent cations; Zn2+ being the most efficient. This treatment was now found also to give rise to an ATP hydrolysis, which occurred without the need for activating ions in the incubation medium. This ATP hydrolysis should thus be described as nonspecific and, in terms of ion dependency, as due to a metalloenzyme, i.e. alkaline phosphatase. Activating ion dependent ATP hydrolysis in the dental tissues was found in the blood vessels and in the apical part of the secretory ameloblasts. The former was activated by Mg2+, Ca2+ and Mn2+, and the latter by Ca2+ and -almost specifically—by Sr2+. Preincubation with Zn2+ always inhibited the ion dependant ATP hydrolysis in the dental tissues.  相似文献   

11.
It is found that the liver skeletal muscle and brain utilize free malonic acid in lipogenesis reactions with different rate. It is shown that the inclusion of malonic acid to lipid biosynthesis is connected with its decarboxylation by the first carbon atom, with the next condensation of the formed intermediate with coenzyme A and further transformations of acetyl-coenzyme A.  相似文献   

12.
13.
Metabolism of progesterone by rat brain, pituitary gland and other tissues   总被引:1,自引:0,他引:1  
  相似文献   

14.
The metabolic changes in the connective tissue glycosaminoglycans were studied in tissues of adjuvant induced arthritic rats. Arthritic process was induced in rats with the inoculation of Freund's adjuvant containing heat killed Mycobacterium tuberculosis in paraffin oil. The connective tissue glycosaminoglycans were fractionated into sulfated and non-sulfated glycosaminoglycans by chemical and enzymatic methods. The biosynthesis of sulfated glycosaminoglycans was examined using radioactive labeled (35S)-sulfate incorporation measurements into the sulfated glycosaminoglycans in tissues such as liver, kidney, spleen and skin of arthritic rats. The catabolism of glycosaminoglycans was studied by measuring the activity of various connective tissue degrading lysosomal glycohydrolases in tissues of experimental animals. In addition, the changes in the contents of total glycosaminoglycans, mono-sulfated, highly-sulfated and non-sulfated glycosaminoglycans were quantitatively assessed in diseased tissues. Alterations in the metabolism of connective tissue glycosaminoglycans were demonstrated in tissues of arthritic rats. The uptake of (35S)-sulfate into the tissue was found to be increased in liver, kidney and spleen, while that of skin decreased during the process of arthritis. The total glycosaminoglycan content was significantly elevated in diseased tissues compared to normal. Similarly, mono-sulfated, highly-sulfated and non-sulfated glycosaminoglycans were found to be increased in arthritic tissues. In addition, the activity of various connective tissue degrading lysosomal glycohydrolases such as -glucuronidase, -N-acetylglucosaminidase, cathepsin B, cathepsin L and collagenolytic cathepsin was increased in tissues of arthritic rat. The results presented in this communication indicate that the characteristic alterations were induced in the metabolism of glycosaminoglycans by the dynamic process of adjuvant arthritis.  相似文献   

15.
The reduction of glutathione by plant tissues   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

16.
G A Lyles 《Life sciences》1978,23(3):223-230
The deamination in vitro of DL-octopamine by MAO in rat brain, heart, kidney, liver and vas deferens has been studied by a radiochemical method. Kinetic constants for octopamine metabolism, as well as its sensitivity to inhibition by the irreversible MAO inhibitor clorgyline are described for each tissue. On the basis of the inhibition data, it was concluded that octopamine is metabolized preferentially by type A MAO in heart, kidney and vas deferens. However, in brain and liver, type B MAO is also responsible for a significant proportion of total octopamine metabolism. These studies are discussed in relation to current ideas about the regulation of octopamine concentrations in animal tissues, and the possible importance of this amine in mammalian physiology.  相似文献   

17.
18.
Adult male rat liver and kidney preparations were incubated with (2-hydroxyoestradiol-1-yl)[(35)S]glutathione. The glutamic acid and glycine residues were removed by enzymes present in the kidney microsomal fraction; the liver preparations had no effect. The resulting 2-hydroxyoestradiol-cysteine conjugate was acetylated at the alpha-amino group by both liver and kidney homogenates fortified with acetyl-coenzyme A, but not significantly in the absence of this coenzyme, or by liver or kidney slices. These results suggest that an oestrogen-glutathione conjugate, if formed in vivo, would be converted into the corresponding mercapturic acid before excretion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号