首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes complete control region sequences of mitochondrial DNA (mtDNA) from 117 Ethiopian cattle from 10 representative populations, in conjunction with the available cattle sequences in GenBank. In total, 79 polymorphic sites were detected, and these defined 81 different haplotypes. The haplotype and nucleotide diversity of Ethiopian cattle did not vary among the populations studied. All mtDNA sequences from Ethiopian cattle converged into one main maternal lineage (T1) that corresponds to African Bos taurus cattle. According to the results of this study, no zebu mtDNA haplotypes have been found in Ethiopia, where the most extensive hybridization took place on the African continent.  相似文献   

2.
In order to provide guidelines for conservationand management of the severely declining LakeSaimaa (eastern Finland) European grayling(Thymallus thymallus, Salmonidae), weinvestigated the microgeographic geneticstructure of three populations from the watersystem using 17 microsatellite loci andmitochondrial DNA polymerase chainreaction-restriction fragment lengthpolymorphism analysis. Microsatellites revealedlow levels of intrapopulation genetic diversityand substantial divergence between populationssampled from spawning sites separated by aslittle as 55 kilometers. Mitochondrial analysisindicated the occurrence of two compositehaplotypes within Lake Saimaa. The nucleotidesubstitution estimates between the haplotypessuggested their separation to markedly predatethe late Pleistocene period. The populationsexhibited marked frequency differences for thetwo mitochondrial haplotypes, reinforcing theview of limited interpopulation gene flowwithin Lake Saimaa. An individual basedmicrosatellite Neighbor-Joining dendrogramdemonstrated clustering of all the specimensaccording to their sampling origin. Individualassignment tests revealed 100% assignmentsuccess of individuals into their population oforigin and 100% exclusion (p <0.05) from all alternative referencepopulations. These findings exemplify that T. thymallus populations may be genetically highly structured over small geographical scales and provide a good starting point for the development of appropriate conservation strategies for Lake Saimaa grayling.  相似文献   

3.
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.  相似文献   

4.
Geist J  Kuehn R 《Molecular ecology》2005,14(2):425-439
Despite the fact that mollusc species play an important role in many aquatic ecosystems, little is known about their biodiversity and conservation genetics. Freshwater pearl mussel (Margaritifera margaritifera L.) populations are seriously declining all over Europe and a variety of conservation programs are being established to support the remaining endangered central European populations. In order to provide guidelines for conservation strategies and management programs, we investigated the genetic structure of 24 freshwater pearl mussel populations originating from five major central European drainages including Elbe, Danube, Rhine, Maas and Weser, representing the last and most important populations in this area. We present a nondestructive sampling method of haemolymph for DNA analyses, which is applicable for endangered bivalves. The analyses of nine microsatellite loci with different levels of polymorphism revealed a high degree of fragmented population structure and very different levels of genetic diversity within populations. These patterns can be explained by historical and demographic effects and have been enforced by anthropogenic activities. Even within drainages, distinct conservation units were detected, as revealed from high F(ST) values, private alleles and genetic distance measures. Populations sampled close to contact zones between main drainage systems showed lowest levels of correct assignment to present-day drainage systems. Populations with high priority for conservation should not only be selected by means of census population size and geographical distance to other populations. Instead, detailed genetic analyses are mandatory for revealing differentiation and diversity parameters, which should be combined with ecological criteria for sustainable conservation and recovery programs.  相似文献   

5.
We investigated the genetic structure within and among Bornean orang-utans (Pongo pygmaeus) in forest fragments of the Lower Kinabatangan flood plain in Sabah, Malaysia. DNA was extracted from hair and faecal samples for 200 wild individuals collected during boat surveys on the Kinabatangan River. Fourteen microsatellite loci were used to characterize patterns of genetic diversity. We found that genetic diversity was high in the set of samples (mean H(E) = 0.74) and that genetic differentiation was significant between the samples (average F(ST) = 0.04, P < 0.001) with F(ST) values ranging from low (0.01) to moderately large (0.12) values. Pairwise F(ST) values were significantly higher across the Kinabatangan River than between samples from the same river side, thereby confirming the role of the river as a natural barrier to gene flow. The correlation between genetic and geographical distance was tested by means of a series of Mantel tests based on different measures of geographical distance. We used a Bayesian method to estimate immigration rates. The results indicate that migration is unlikely across the river but cannot be completely ruled out because of the limited F(ST) values. Assignment tests confirm the overall picture that gene flow is limited across the river. We found that migration between samples from the same side of the river had a high probability indicating that orang-utans used to move relatively freely between neighbouring areas. This strongly suggests that there is a need to maintain migration between isolated forest fragments. This could be done by restoring forest corridors alongside the river banks and between patches.  相似文献   

6.
Borderea chouardii is a relictual and dioecious, strictly sexually reproducing, long-living geophyte of the Dioscoreaceae family. Previous biological and demographic studies have indicated the existence of a uniformly distributed panmictic population of this taxon at the southernmost Spanish pre-Pyrenean mountain ranges where it occurs in rather inaccessible crevices of a single limestone cliff. However, individuals of B. chouardii are spatially subdivided into two subpopulations located, respectively, on the upper and lower parts of the cliff, and vertically separated 150 m. Because of its extreme rarity, B. chouardii was the first Iberian taxon to have a specific conservation plan and has been included in several red lists under the category of critically endangered (CR). However, no previous attempts have been conducted to analyse the fine scale evolutionary mechanisms involved in its present microspatial distribution. Genetic diversity and population structure have been investigated through the analysis of neutral hypervariable markers such as simple sequence repeats (SSRs) and randomly amplified polymorphic DNAs (RAPDs) to unravel the impact of life history traits in the differentiation of the two subpopulations. Both types of molecular markers were unequivocal in distinguishing two genetically distinct groups of individuals corresponding to their spatial separation. However, SSRs detected a higher level of subpopulation differentiation (F(ST) = 0.35, R(ST) = 0.32) than RAPDs (F(ST) = 0.21). SSR data indicated significant deviation from random dispersal of genes and genotypes between the two groups, suggesting that mating occurs mainly among individuals within subpopulations, thus, favouring the divergence between the two groups. This microevolutionary differentiation scenario might have been caused by a coupled effect of past genetic drift and reproductive isolation, as a result of strong glacial age bottlenecks and inefficient dispersal system of pollen and seeds, respectively. The identification of such genetic structure in this narrow endemic prompts a modification of the management strategies of its single extant population.  相似文献   

7.
The southern brown bandicoot (Isoodon obesulus) has undergone significant range contractions since European settlement, and it is now considered Endangered throughout south-eastern mainland Australia. This species currently has a highly fragmented distribution inhabiting a mosaic of habitats. This project uses mitochondrial DNA (mtDNA) and microsatellite data to determine levels of genetic diversity, population structure and evolutionary history, which can aid wildlife managers in setting priorities and determining management strategies. Analyses of genetic diversity revealed low levels of mtDNA variability (mean h=50.42%, =0.76%) and divergence (mean dA=0.29%) across all regions investigated, and was among the lowest recorded for marsupials. These data indicate a relatively small female effective population size, which is most likely a consequence of a large-scale population contraction and subsequent expansion occurring in pre-history (mismatch distribution analysis, SSD P-value=0.12). Individuals from the Sydney region experienced significant reductions in microsatellite diversity (A=3.8, HE=0.565), with the Garigal National Park (NP) population exhibiting genetic reduction signatures indicating a recent population bottleneck. Population differentiation analysis revealed significant genetic division amongst I. obesulus individuals from Sydney, East Gippsland and Mt Gambier regions (=0.176–0.271), but could not separate the two Sydney populations (Ku-ring-gai NP and Garigal NP). Based on these data and habitat type, translocations could readily be made between the two Sydney populations, but not between the others. Phylogenetic comparisons between I. obesulus and I. auratus show little support for current Isoodon taxonomy, consistent with the findings of Pope etal. 2001. We therefore recommend the recognition of only three I. obesulus sub-species and suggest that these comprise a single morphologically diverse species that once was widespread across Australia.  相似文献   

8.
1. The genetic variation of the endangered freshwater fish Ladigesocypris ghigii, endemic to the island of Rhodes (Greece), was investigated for nine populations, originating from seven different stream systems and a reservoir, both at the mtDNA and nuclear level, in order to suggest conservation actions. 2. Both restriction fragment length polymorphism analysis of five segments of mitochondrial DNA (ND‐5/6, COI and 12S‐16S rRNA) amplified by polymerase chain reaction, and random amplified polymorphic DNA analysis, revealed extremely low levels of intra‐population polymorphism. It is highly likely that the low intra‐population variability is the result of successive bottleneck events evident in shrinkage and expansion of the populations year after year, which may have led to a complete loss of several genotypes and haplotypes, and an increased degree of inbreeding. 3. Inter‐population genetic structuring was high, with fixation of haplotypes within six of the nine populations and fixation of alleles within populations originating from different waterbodies. It is probable that all haplotypes and/or alleles found were initially represented in all populations. However, because of the long time of isolation coupled with successive bottleneck and subsequent genetic drift, common mtDNA haplotypes and alleles among the populations may have become rare or extinct through stochastic lineage loss. 4. Although nucleotide divergence among haplotypes was very shallow, half of the haplotypes recorded (three of six), resulted from nucleotide changes on the 12S–16S rRNA segments, which are the most conserved part of the mitochondrial genome. This fact may indicate that the observed genetic variation did not necessarily result only from the retention of ancestral polymorphism, but may have arisen through mutation and complete lineage sorting over a relatively small number of generations, once the populations had become isolated from one another. 5. Our data suggest that two of the L. ghigii populations may be on independent evolutionary trajectories. Considering that each population appears so far well adapted within each site, all populations should be managed and conserved separately.  相似文献   

9.
The grey wolf (Canis lupus) was numerous on the Scandinavian peninsula in the early 19th century. However, as a result of intense persecution, the population declined dramatically and was virtually extinct from the peninsula by the 1960s. We examined historical patterns of genetic variability throughout the period of decline, from 1829 to 1979. Contemporary Finnish wolves, considered to be representative of a large eastern wolf population, were used for comparison. Mitochondrial DNA (mtDNA) variability among historical Scandinavian wolves was significantly lower than in Finland while Y chromosome variability was comparable between the two populations. This may suggest that long-distance migration from the east has been male-biased. Importantly though, as the historical population was significantly differentiated from contemporary Finnish wolves, the overall immigration rate to the Scandinavian peninsula appears to have been low. Levels of variability at autosomal microsatellite loci were high by the early 1800s but declined considerably towards the mid-20th century. At this time, approximately 40% of the allelic diversity and 30% of the heterozygosity had been lost. After 1940, however, there is evidence of several immigration events, coinciding with episodes of marked population increase in Russian Karelia and subsequent westwards migration.  相似文献   

10.
The critically endangered Madagascar fish-eagle ( Haliaeetus vociferoides ) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100–120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle ( Haliaeetus vocifer ), and 16 of these loci were also characterized in the white-tailed eagle ( Haliaeetus albicilla ) and the bald eagle ( Haliaeetus leucocephalus ). Overall, extremely low genetic diversity was observed in the Madagascar fish-eagle compared to other surveyed Haliaeetus species. Determining whether this low diversity is the result of a recent bottleneck or a more historic event has important implications for their conservation. Using a Bayesian coalescent-based method, we show that Madagascar fish-eagles have maintained a small effective population size for hundreds to thousands of years and that its low level of neutral genetic diversity is not the result of a recent bottleneck. Therefore, efforts made to prevent Madagascar fish-eagle extinction should place high priority on maintenance of habitat requirements and reducing direct and indirect human persecution. Given the current rate of deforestation in Madagascar, we further recommend that the population be expanded to occupy a larger geographical distribution. This will help the population persist when exposed to stochastic factors (e.g. climate and disease) that may threaten a species consisting of only 200 adult individuals while inhabiting a rapidly changing landscape.  相似文献   

11.
Rhododendrons are woody plants, famous throughout the world as having high horticultural value. However, many wild species are currently threatened with extinction. Here, we report for the first time a high-quality, chromosome-level genome of Rhododendron griersonianum, which has contributed to approximately 10% of all horticultural rhododendron varieties but which in its wild form has been evaluated as critically endangered. The final genome assembly, which has a contig N50 size of approximately 34 M and a total length of 677 M, is the highest-quality genome sequenced within the genus to date, in part due to its low heterozygosity (0.18%). Identified repeats constitute approximately 57% of the genome, and 38 280 protein-coding genes were predicted with high support. We further resequenced 31 individuals of R. griersonianum as well as 30 individuals of its widespread relative R. delavayi, and performed additional conservation genomic analysis. The results showed that R. griersonianum had lower genetic diversity (θ = 2.58e−3; π = 1.94e−3) when compared not only to R. delavayi (θ = 11.61e−3, π = 12.97e−3), but also to most other woody plants. Furthermore, three severe genetic bottlenecks were detected using both the Stairway plot and fastsimcoal2 analysis, which are thought to have occurred in the late Middle Pleistocene and the Last Glacial Maximum (LGM) period. After these bottlenecks, R. griersonianum recovered and maintained a constant effective population size (>25 000) until now. Intriguingly, R. griersonianum has accumulated significantly more deleterious mutations in the homozygous state than R. delavayi, and several deleterious mutations (e.g., in genes involved in the response to heat stress) are likely to have harmed the adaptation of this plant to its surroundings. This high-quality, chromosome-level genome and the population genomic analysis of the critically endangered R. griersonianum will provide an invaluable resource as well as insights for future study in this species to facilitate conservation and in the genus Rhododendron in general.  相似文献   

12.
Larval dispersal may have an important effect on genetic structure of benthic fishes. To examine the population genetic structure of spottedtail goby Synechogobius ommaturus, a 478 base pair (bp) fragment of the hypervariable portion of the mtDNA control region was sequenced and used to interpret life‐history characteristics and larval dispersal strategy. Individuals (n = 186) from 10 locations on the coasts of China and Korea were analysed and 44 haplotypes were obtained. The levels of haplotype and nucleotide diversity were higher in East China Sea populations than in other populations. Both the phylogenetic tree and the minimum spanning tree showed that no significant genealogical structures corresponding to sampling locations existed. AMOVA and pair‐wise FST revealed significant genetic differentiation between populations from Korea and China. A significant isolation by distance pattern was observed in this species (r = 0·53, P < 0·001). Both mismatch distribution analysis and neutrality tests showed S. ommaturus to have experienced a recent population expansion. These results suggest that the Pleistocene ice ages had a major effect on the phylogeographic pattern of S. ommaturus, that larvae might avoid offshore dispersal and that dispersal of larvae may maintain a migration–drift equilibrium.  相似文献   

13.
遗传多样性与濒危植物保护生物学研究进展   总被引:37,自引:3,他引:37  
尽管对于濒危物种的遗传学人们已经进行了大量研究,但是种群遗传学在植物保护中的实际地位尚存在很大争议。濒危物种的遗传多样性可能会由于遗传漂变、近交的作用而丧失;但这种丧失更可能是濒危的结果而不是濒危的起因。遗传多样性水平与物种生存力之间没有任何必然的联系。但植物种群遗传结构如果由于自交不亲和等位基因的丧失和与亲缘种杂交造成的遗传同化而发生改变,那么它对物种生存力会产生明显负作用。  相似文献   

14.
The Goitered Gazelle, Gazella subgutturosa, is the most widespread gazelle species in the Middle East and central Asia inhabiting desert and semi-desert habitats. Today it is threatened and its geographic range and population size have experienced significant decline in the last decades. In Iran, the remnant populations are confined to fragmented habitats. We aimed to characterise genetic diversity and phylogenetic status of the populations of Goitered Gazelle in Central Iran and to evaluate the potential effect of a historic population bottleneck on the genetic variation of today’s population. We used noninvasive sampling to uncover structure and level of genetic variation in a fragment of the cytochrome-b gene from 170 samples. Genealogical analyses were performed using HKY+I model and phylogenetic trees reconstructed using Bayesian inference and maximum likelihood. We found extremely low levels of genetic variation, with altogether only five haplotypes in samples from different populations. Overall haplotype diversity was 0.081 and nucleotide diversity 0.0003. The mean observed mismatch between any two sequences was 0.093 with the largest peak for small numbers. The mismatch distribution fit the model of population expansion and suggested that gazelles had experienced a sudden expansion. An unrooted median-joining network analysis of mtDNA haplotypes showed a star-like structure which few mutations steps separating the haplotypes from other regions. Our findings strengthen the urgency of preserving the species’ genetic diversity to prevent local extinction.  相似文献   

15.
An assessment of conservation units for the Sumatran rhinoceros (Dicerorhinus sumatrensis) was conducted using a population aggregation analysis (PAA) of mitochondrial DNA site substitutions. Populations were defined as the three geographically separated regions of West Malaysia, Sumatra, and Borneo. The intent of this assessment was to explore management options for this highly endangered lineage rather than conduct a traditional taxonomic revision. Individual DNA positions were not diagnostic for any population. A single haplotype provided a character as support for diagnosing the West Malaysian and Bornean population. The haplotypes on West Malaysia and Sumatra were more similar to each other than either was to the one on Borneo. These data, and a review of the morphological characters, support the option of treating Sumatran rhinos as a single conservation unit, providing managers with greater flexibility in managing the unique Dicerorhine lineage. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Genetic analyses on noninvasively collected samples have revolutionized how populations are monitored. Most noninvasive monitoring studies have used hair or scat for individual identification of elusive mammals, but here we utilize naturally shed feathers. The Eastern imperial eagle (EIE) is a species of conservation concern throughout Central Asia and, like most raptors, EIEs are inherently challenging to study because adults are difficult to capture and band using conventional techniques. Over 6 years, we noninvasively collected hundreds of adult feathers and directly sampled EIE chicks at a national nature reserve in Kazakhstan. All samples were genetically sexed and genotyped at a suite of microsatellite loci. Genetically profiled adult feathers identified and monitored the presence of individual eagles over time, enabling us to address a variety of issues related to the biology, demography, and conservation of EIEs. Specifically, we characterized (i) the genetic mating system, (ii) relatedness among mated pairs, (iii) chick sex ratios, and (iv) annual turnover in an adult breeding population. We show that EIEs are genetically monogamous and furthermore, there is no apparent relatedness-based system of mate choice (e.g. inbreeding avoidance). Results indicate that annual adult EIE survivorship (84%) is lower than expected for a long-lived raptor, but initial analyses suggest the current reproductive rate at our study site is sufficient to maintain a stable breeding population. The pristine habitat at our study site supports an EIE population that is probably the most demographically robust in the world; thus, our results caution that populations in marginal habitats may not be self-sustaining.  相似文献   

17.
In this paper, we propose an integrative framework to assess the conservation status of rare plant populations that combines population trends with four criteria to assess habitat vulnerability. We illustrate how population trends can be studied using a presence/absence method for a species that is inappropriate for a demographic study. The four other criteria concern habitat fragmentation, the human footprint in the surrounding landscape, observed impacts on a population and elements of habitat structure and quality that may impinge on population status. Each criterion is assessed with various indicators that can be adapted to the biology and ecology of the studied species. To test the feasibility of the proposed framework, we perform a case study of a Mediterranean geophyte Allium chamaemoly L., a species listed for protection in France. The results show a wide range of conservation status among a regional set of populations in the study species. Variation among the indicators used to assess different criteria illustrates the importance of assessing a range of different factors and ways to combine them if population conservation status is to be objectively identified. The study of diverse criteria may allow for a more precise assessment of the causes of differences in conservation status among populations of a single species. The framework of five criteria could be adapted by modification or substitution of indicators or adaptation of thresholds among classes, and thus be applied to other species of conservation importance.  相似文献   

18.
During the last glacial age, Afro-alpine habitats were widespread across the highlands of Ethiopia. A wolf-like canid ancestor is thought to have colonized this expanding habitat and given rise to a new species that was remarkably well adapted to the high altitude environment: the Ethiopian wolf Canis simensis. Here, we address the timing of genetic divergence and examine population genetic history and structure by investigating the distribution of mitochondrial DNA (mtDNA) sequence variation. The pattern of mtDNA variation and geographical distribution indicate an initial population expansion, probably immediately after divergence from the wolf-like ancestor, around 100,000 years ago. The partition of mtDNA haplotypes that followed was most likely the result of habitat reduction and fragmentation at the onset of deglaciation approximately 15,000 years ago. Phylogenetic and geographical associations suggest that the most likely genetic partitioning corresponds to three mountain areas, Arsi/Bale, Wollo/Shoa and Simien/Mt. Guna. Although there is a degree of clustering of haplotypes from both sides of the Rift Valley, the lack of reciprocal monophyly does not support the taxonomic classification of two subspecies. This study highlights the importance of populations north of the Rift Valley for the maintenance of genetic variability within the species and has consequent implications for conservation.  相似文献   

19.
Identification of units within species worthy of separate management consideration is an important area within conservation. Mitochondrial DNA (mtDNA) surveys can potentially contribute to this by identifying phylogenetic and population structure below the species level. The American crocodile (Crocodylus acutus) is broadly distributed throughout the Neotropics. Its numbers have been reduced severely with the species threatened throughout much of its distribution. In Colombia, the release of individuals from commercial captive populations has emerged as a possible conservation strategy that could contribute to species recovery. However, no studies have addressed levels of genetic differentiation or diversity within C. acutus in Colombia, thus complicating conservation and management decisions. Here, sequence variation was studied in mtDNA cytochrome b and cytochrome oxidase I gene sequences in three Colombian captive populations of C. acutus. Two distinct lineages were identified: C. acutus‐I, corresponding to haplotypes from Colombia and closely related Central American haplotypes; and C. acutus‐II, corresponding to all remaining haplotypes from Colombia. Comparison with findings from other studies indicates the presence of a single “northern” lineage (corresponding to C. acutus‐I) distributed from North America (southern Florida), through Central America and into northern South America. The absence of C. acutus‐II haplotypes from North and Central America indicates that the C. acutus‐II lineage probably represents a separate South American lineage. There appears to be sufficient divergence between lineages to suggest that they could represent two distinct evolutionary units. We suggest that this differentiation needs to be recognized for conservation purposes because it clearly contributes to the overall genetic diversity of the species. All Colombian captive populations included in this study contained a mixture of representatives of both lineages. As such, we recommend against the use of captive‐bred individuals for conservation strategies until further genetic information is available.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号