首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiu HY  Sun KH  Chen SY  Wang HH  Lee MY  Tsou YC  Jwo SC  Sun GH  Tang SJ 《Cytokine》2012,59(2):423-432
The amount of monocyte chemoattractant protein-1 (MCP-1/CCL2) produced by a transitional cell carcinoma is directly correlated with high recurrence and poor prognosis in bladder cancer. However, the mechanisms underlying the effects of CCL2 on tumor progression remain unexplored. To investigate the role played by CCL2, we examined cell migration in various bladder cancer cell lines. We found that high-grade cancer cells expressing high levels of CCL2 showed more migration activity than low-grade bladder cancer cells expressing low levels of the chemokine. Although the activation of CCL2/CCR2 signals did not appreciably affect cell growth, it mediated cell migration and invasion via the activation of protein kinase C and phosphorylation of tyrosine in paxillin. Blocking CCL2 and CCR2 with small hairpin RNA (shCCL2) or a specific inhibitor reduced CCL2/CCR2-mediated cell migration. The antagonist of CCR2 promoted the survival of mice bearing MBT2 bladder cancer cells, and CCL2-depleted cells showed low tumorigenicity compared with shGFP cells. In addition to observing high-levels of CCL2 in high-grade human bladder cancer cells, we showed that the CCL2/CCR2 signaling pathway mediated migratory and invasive activity, whereas blocking the pathway decreased migration and invasion. In conclusion, high levels of CCL2 expressed in bladder cancer mediates tumor invasion and is involved with advanced tumorigenesis. Our findings suggest that this CCL2/CCR2 pathway is a potential candidate for the attenuation of bladder cancer metastases.  相似文献   

2.
3.
Bone morphogenetic protein-2 (BMP-2)-containing bone grafts are useful regenerative materials for oral and maxillofacial surgery; however, several in vitro and in vivo studies previously reported cancer progression-related adverse effects caused by BMP-2. In this study, by quantifying the rhBMP-2 content released from bone grafts, the rhBMP-2 concentration that did not show cytotoxicity in each cell line was determined and applied to the in vitro monoculture or coculture model in the invasion assay. Our results showed that 1 ng/ml rhBMP-2, while not affecting cancer cell viability, significantly increased the invasion ability of the cancer cells cocultured with fibroblasts. Cocultured medium with rhBMP-2 also contained increased levels of matrix metalloproteinases. rhBMP-2-treated cocultured fibroblasts did not show a prominent difference in mRNA expression profile. Some cytokines, however, were detected in the conditioned medium by a human cytokine antibody array. Among them, the cancer invasion-related factor CCL5 was quantified by ELISA. Interestingly, CCL5 neutralizing antibodies significantly reduced the invasion of oral cancer cells. In conclusion, our results suggest that 1 ng/ml rhBMP-2 may induce invasion of oral squamous cell carcinoma (OSCC) cells by CCL5 release in coculture models. Therefore, we propose that a careful clinical examination before the use of rhBMP-2-containing biomaterials is indispensable for using rhBMP-2 treatment to prevent cancer progression.  相似文献   

4.
CCL5 is a member of the CC chemokine family expressed in a wide array of immune and non-immune cells in response to stress signals. CCL5 expression correlates with advanced human breast cancer. However, its functional significance and mode of action have not been established. Here, we show that CCL5-deficient mice are resistant to highly aggressive, triple-negative mammary tumor growth. Hematopoietic CCL5 is dominant in this phenotype. The absence of hematopoietic CCL5 causes aberrant generation of CD11b+/Gr-1+, myeloid-derived suppressor cells (MDSCs) in the bone marrow in response to tumor growth by accumulating Ly6Chi and Ly6G+ MDSCs with impaired capacity to suppress cytotoxicity of CD8+ T cells. These properties of CCL5 are observed in both orthotopic and spontaneous mammary tumors. Antibody-mediated systemic blockade of CCL5 inhibits tumor progression and enhances the efficacy of therapeutic vaccination against non-immunogenic tumors. CCL5 also helps maintain the immunosuppressive capacity of human MDSCs. Our study uncovers a novel, chemokine-independent activity of the hematopoietically derived CCL5 that promotes mammary tumor progression via generating MDSCs in the bone marrow in cooperation with tumor-derived colony-stimulating factors. The study sheds considerable light on the interplay between the hematopoietic compartment and tumor niche. Because of the apparent dispensable nature of this molecule in normal physiology, CCL5 may represent an excellent therapeutic target in immunotherapy for breast cancer as well as a broad range of solid tumors that have significant amounts of MDSC infiltration.  相似文献   

5.
6.
A constitutive and dynamic interaction between tumor cells and their surrounding stroma is a prerequisite for tumor invasion and metastasis. Fibroblasts and myofibroblasts (collectively called cancer associated fibroblasts, CAFs) often represent the major cellular components of tumor stroma. Tumor cells secret different growth factors which induce CAFs proliferation and differentiation, and, consequently, CAFs secrete different chemokines, cytokines or growth factors which induce tumor cell invasion and metastasis. In this study we showed here that CAFs from breast cancer surgical specimens significantly induced the invasion of breast cancer cells in vitro. Most interestingly, the novel multiple tyrosine kinase inhibitor Dovitinib significantly blocked the CAFs-induced invasion of breast cancer cells by, at least in part, inhibition of the expression and secretion of CCL2, CCL5 and VEGF in CAFs. Inhibition of PI3K/Akt/mTOR signaling could be responsible for the effects of Dovitinib, since Dovitinib antagonized the promoted phosphorylated Akt after treatment with PDGF, FGF or breast cancer cell-conditioned media. Treatment with Dovitinib in combination with PI3K/Akt/mTOR signaling inhibitors Ly294002 or RAD001 resulted in additive inhibition of cell invasion. This is the first in vitro study to show that the multiple tyrosine kinase inhibitor has therapeutic activities against breast cancer metastasis by targeting both tumor cells and CAFs.  相似文献   

7.
Recent studies demonstrate that cyclooxygenase-2 (COX-2) expression is frequently associated with lymph node metastasis. However, the mechanism by which COX-2 increases the invasion of cancer cells to lymph node is unclear. CCR7 is a chemokine receptor that plays important roles in the mediation of migration of leukocytes and dendritic cells toward lymphatic endothelial cells (LECs) that express receptor ligand CCL21. We found that treatment of prostaglandin E(2) or ectopic expression of COX-2 in MCF-7 cells up-regulated CCR7 expression. On the contrary, knockdown of COX-2 by small hairpin RNA reduced CCR7 in COX-2-overexpressing MDA-MB-231 cells. Interaction of CCR7 and CCL21 was important for the migration of breast cancer cells toward LECs because antibodies against these two molecules inhibited the migration. We also found that COX-2 increased CCR7 expression via the EP2 and EP4 receptor in breast cancer cells. EP2 and EP4 agonists stimulated CCR7 in MCF-7 cells, whereas antagonists or small hairpin RNA of EP2 and EP4 attenuated CCR7 in MDA-MB-231 cells. Protein kinase A and AKT kinase were involved in COX-2-induced CCR7. Pathological analysis demonstrated that COX-2 overexpression was associated with CCR7, EP2, and EP4 expressions in breast tumor tissues. In addition, CCR7 expression in COX-2-overexpressing tumors was significantly correlated with lymph node metastasis. Collectively, we suggest that CCR7 is a down-stream target for COX-2 to enhance the migration of breast cancer cells toward LECs and to promote lymphatic invasion.  相似文献   

8.
9.
The relative expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) is an important determinant in trophoblast invasion of the uterus and tumor invasion and metastasis. Our previous studies have shown that low oxygen levels increase the in vitro invasiveness of trophoblast and tumor cells. The present study examined whether changes in oxygen levels affect TIMP and MMP expression by cultured trophoblast and breast cancer cells. Reverse zymographic analysis demonstrated reduced TIMP-1 protein secretion by HTR-8/SVneo trophoblast cells as well as MDA-MB-231 and MCF-7 breast carcinoma cells cultured in 1% vs 20% oxygen for 24 h. While gelatin zymography revealed no changes in the levels of MMP-9 secreted by HTR-8/SVneo trophoblasts cultured under various oxygen concentrations for 24 h, human MDA-MB-231 breast carcinoma cells displayed increased MMP-9 secretion and human MCF-7 breast cancer cells exhibited reduced secretion of this enzyme when cultured under similar conditions. In contrast, MMP-2 levels remained unchanged in all cultures incubated under similar conditions. Western blot analysis of MMP-9 protein in cell extracts confirmed the results of zymography. To assess the contribution of enhanced MMP activity to hypoxia-induced invasion, the effect of an MMP inhibitor (llomastat) on the ability of MDA-MB-231 cells to penetrate reconstituted extracellular matrix (Matrigel) was examined. Results showed that MMP inhibition significantly decreased the hypoxic upregulation of invasion by these cells. These findings indicate that the increased cellular invasiveness observed under reduced oxygen conditions may be due in part to a shift in the balance between MMPs and their inhibitors favoring increased MMP activity.  相似文献   

10.
Osteopontin (OPN) has been implicated as an important mediator of breast cancer progression and metastasis and has been investigated for use as a potential therapeutic target in the treatment of breast cancer. However, the in vivo antitumor effect of anti-OPN antibodies on breast cancer has not been reported. In this study, a mouse anti-human OPN antibody (1A12) was humanized by complementarity-determining region grafting method based on computer-assisted molecular modeling. A humanized version of 1A12, denoted as hu1A12, was shown to possess affinity comparable to that of its parental antibody. The ability of hu1A12 to inhibit cell migration, adhesion, invasion and colony formation was assessed in a highly metastatic human breast cancer cell line MDA-MB-435S. The results indicated that hu1A12 was effective in inhibiting the cell adhesion, migration, invasion and colony formation of MDA-MB-435S cells in vitro. hu1A12 also showed significant efficacy in suppressing primary tumor growth and spontaneous metastasis in a mouse lung metastasis model of human breast cancer. The specific epitope recognized by hu1A12 was identified to be 212NAPSD216, adjacent to the calcium binding domain of OPN. Our data strongly support that OPN is a potential target for the antibody-based therapies of breast cancer. The humanized anti-OPN antibody hu1A12 may be a promising therapeutic agent for the treatment of human breast cancer.  相似文献   

11.
Increased CCL5 levels are markers of an unfavourable outcome in patients with melanoma, breast, cervical, prostate, gastric or pancreatic cancer. Here, we have assessed the role played by CCL5/CCR5 interactions in the development of colon cancer. To do so, we have examined a number of human colorectal carcinoma clinical specimens and found CCL5 and its receptors over-expressed within primary as well as liver and pulmonary metastases of patients compared to healthy tissues. In vitro, CCL5 increased the growth and migratory responses of colon cancer cells from both human and mouse origins. In addition, systemic treatment of mice with CCL5-directed antibodies reduced the extent of development of subcutaneous colon tumors, of liver metastases and of peritoneal carcinosis. Consistently, we found increased numbers of CD45-immunoreactive cells within the stroma of the remaining lesions as well as at the interface with the healthy tissue. In contrast, selective targeting of CCR5 through administration of TAK-779, a CCR5 antagonist, only partially compromised colon cancer progression. Furthermore, CCL5 neutralization rendered the tumors more sensitive to a PDGFRβ-directed strategy in mice, this combination regimen offering the greatest protection against liver metastases and suppressing macroscopic peritoneal carcinosis. Collectively, our data demonstrate the involvement of CCL5 in the pathogenesis of colorectal carcinoma and point to its potential value as a therapeutic target.  相似文献   

12.
Certain immune cells and inflammatory cytokines are essential components in the tumor microenvironment to promote breast cancer progression. To identify key immune players in the tumor microenvironment, we applied highly invasive MDA-MB-231 breast cancer cell lines to co-culture with human monocyte THP-1 cells and identified CXCL7 by cytokine array as one of the increasingly secreted cytokines by THP-1 cells. Further investigations indicated that upon co-culturing, breast cancer cells secreted CSF1 to induce expression and release of CXCL7 from monocytes, which in turn acted on cancer cells to promote FAK activation, MMP13 expression, migration, and invasion. In a xenograft mouse model, administration of CXCL7 antibodies significantly reduced abundance of M2 macrophages in tumor microenvironment, as well as decreased tumor growth and distant metastasis. Clinical investigation further suggested that high CXCL7 expression is correlated with breast cancer progression and poor overall survival of patients. Overall, our study unveils an important immune cytokine, CXCL7, which is secreted by tumor infiltrating monocytes, to stimulate cancer cell migration, invasion, and metastasis, contributing to the promotion of breast cancer progression.Subject terms: Breast cancer, Cancer microenvironment, Target identification, Chemokines  相似文献   

13.
Tumor-associated chemokines, including CC chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2), are thought to play many roles in cancer progression. Here we demonstrate the novel finding that during growth of the D1-7,12-dimethylbenzanthracene-3 mammary tumor in BALB/c mice, there is a dramatic up-regulation of CCL2 in splenic T cells at both the mRNA and protein levels upon stimulation. Of particular relevance is the finding that tumor-infiltrating T cells also produce high levels of CCL2. While a variety of tumor cell lines have been found to produce CCL2, we found no detectable levels of CCL2 protein in supernatants of the cultured mammary tumor cells. Investigation of the mechanisms involved in CCL2 induction showed that treatment of splenic T cells with the tumor-derived factors GM-CSF and phosphatidyl serine (PS) resulted in increased CCL2 production. This increased production may be involved in the downregulation of IFN-gamma by the T cells of tumor-bearing mice previously reported in this model, as treatment of splenic T lymphocytes with CCL2 resulted in a decreased secretion of IFN-gamma by those cells.  相似文献   

14.
Several studies indicate that progesterone exerts relevant effects in breast tissue. However, the exact role of this steroid in breast cancer development and progression has not been elucidated. Here, we show that platelet-derived growth factor (PDGF)-A is one of the progesterone target genes on breast cancer MCF7 and T47D cells. A paracrine role for PDGF-A was investigated, since its receptor expression was down-regulated from breast cancer cells. Progesterone increased PDGF-A protein release as evaluated by Western blotting and ELISA. Medium from Progesterone-treated MCF7 cells resulted in phosphorylation of smooth muscle cells PDGF receptor alpha. This effect was not observed after treatment with PDGF inhibitor. MCF7 cells-secreted PDGF-A was able to increase smooth muscle cell viability and proliferation and decrease apoptosis, effects that were prevented by the use of a PDGF-A neutralizing antibody. Notably, cell invasion was not influenced by PDGF-A secreted by MCF7 cells. Our results elucidated for the first time the cross talk between progesterone and PDGF signaling pathway. The fact that MCF7-secreted PDGF elicited crucial roles in vascular wall smooth muscle cells, suggested a paracrine pathway for progesterone. Targeting these progesterone-induced processes may provide novel therapeutic strategies for hormone-dependent human breast cancer.  相似文献   

15.
Chemokines are essential mediators of immune cell trafficking. In a tumor microenvironment context, chemotactic cytokines are known to regulate the migration, positioning and interaction of different cell subsets with both anti- and pro-tumor functions. Additionally, chemokines have critical roles regarding non-immune cells, highlighting their importance in tumor growth and progression.CCL18 is a primate-specific chemokine produced by macrophages and dendritic cells. This chemokine presents both constitutive and inducible expression. It is mainly associated with a tolerogenic response and involved in maintaining homeostasis of the immune system under physiological conditions. Recently, CCL18 has been noticed as an important component of the complex chemokine system involved in the biology of tumors. This chemokine induces T regulatory cell differentiation and recruitment to the tumor milieu, with subsequent induction of a pro-tumor (M2-like) macrophage phenotype. CCL18 is also directly involved in cancer cell-invasion, migration, epithelial-to-mesenchymal transition and angiogenesis stimulation, pinpointing an important role in the promotion of cancer progression. Interestingly, this chemokine is highly expressed in tumor tissues, particularly at the invasive front of more advanced stages (e.g. colorectal cancer), and high levels are detected in the serum of patients, correlating with poor prognosis.Despite the promising role of CCL18 as a biomarker and/or therapeutic target to hamper disease progression, its pleiotropic functions in a context of cancer are still poorly explored. The scarce knowledge concerning the receptors for this chemokine, together with the insufficient insight on the downstream signaling pathways, have impaired the selection of this molecule as an immediate target for translational research.In this Review, we will discuss recent findings concerning the role of CCL18 in cancer, integrate recently disclosed molecular mechanisms and compile data from current clinical studies.  相似文献   

16.
Metastatic spread of cancer to distant vital organs, including lung and bone, is the overwhelming cause of breast cancer mortality and morbidity. Effective treatment of systemic metastasis relies on the identification and functional characterization of metastasis mediators to multiple organs. Overexpression of the chemokine (C-C motif) ligand 2 (CCL2) is frequently associated with advanced tumor stage and metastatic relapse in breast cancer. However, the functional mechanism of CCL2 in promoting organ-specific metastasis of breast cancer has not been rigorously investigated. Here, we used organ-specific metastatic sublines of the MDA-MB-231 human breast cancer cell line to demonstrate that overexpression of CCL2 promotes breast cancer metastasis to both lung and bone. Conversely, blocking CCL2 function with a neutralizing antibody reduced lung and bone metastases. The enhancement of lung and bone metastases by CCL2 was associated with increased macrophage infiltration and osteoclast differentiation, respectively. By performing functional assays with primary cells isolated from the wild type, CCL2 and CCR2 knock-out mice, we showed that tumor cell-derived CCL2 depends on its receptor CCR2 (chemokine, CC motif, receptor 2) expressed on stromal cells to exert its function in promoting macrophage recruitment and osteoclast differentiation. Overall, these data demonstrated that CCL2-expressing breast tumor cells engage CCR2+ stromal cells of monocytic origin, including macrophages and preosteoclasts, to facilitate colonization in lung and bone. Therefore, CCL2 and CCR2 are promising therapeutic targets for simultaneously inhibiting lung and bone metastasis of breast cancer.Breast cancer is the most common malignancy in women in the United States, with an estimated 182,000 new cases and 40,000 deaths in 2008 (1). Late stage breast cancer patients develop metastases in bone, lung, liver, brain, and other organs, which are responsible for most breast cancer-related mortality and morbidity (2). Severe complications from bone metastasis include debilitating bone fractures, nerve compression and bone pain, and hypercalcemia (35), whereas lung metastasis is accompanied by cough, bloody sputum, rib cage pain, and, eventually, failure of the respiratory functions (6). Colonization of different secondary organs by breast cancer is believed to be a complex, multigenic process that depends on productive interactions between tumor cells and stromal microenvironments through concerted actions of organ-specific metastasis genes (7, 8). Functional genomic analysis of preclinical models of breast cancer to bone, lung, and brain have identified distinct sets of organ-specific metastasis genes (911), providing novel mechanistic insights into key rate-limiting steps of metastasis to different organs. However, as advanced breast cancer patients often suffer from metastases at several secondary organs, identifying genes that are capable of instigating metastasis to multiple sites may provide the ideal targets for therapeutic intervention of systemic metastasis.Chemokines are small (8–14 kDa) proteins classified into four conserved groups (CXC, CC, C, and CX3C) based on the position of the first two cysteines that are adjacent to the amino terminus (12). They are chemotactic cytokines that stimulate directed migration of leukocytes in response to inflammatory signals. Chemokines are also involved in the maintenance of hematopoietic homeostasis, regulation of cell proliferation, tissue morphogenesis, and angiogenesis (13). Chemokines bind to the seven-transmembrane domain receptors to elicit downstream molecular events that coordinate cell movement. Even though chemokines are unlikely to be a contributing factor for tumor initiation, they can have pleiotropic effects on tumor progression (13, 14). Among more than 50 human chemokines, CCL2 is of particular importance. CCL2, also called monocyte chemoattractant protein-1 (MCP-1), is a potent chemoattractant for monocytes, memory T lymphocytes, and natural killer cells (15). It is involved in a number of inflammatory conditions associated with monocyte recruitment, including delayed hypersensitivity reactions, bacterial infection, arthritis, and renal disease (15). The importance of CCL2 in cancer was manifested by its overexpression in a variety of tumor types, including glioma, ovarian, esophagus, lung, breast, and prostate cancers (1517). In prostate cancer, CCL2 expression levels was associated with advanced pathological stage (16). Importantly, CCL2-neutralizing antibodies inhibit bone resorption in vitro and bone metastasis in vivo (1820). In lung cancer, serum CCL2 levels were elevated in lung cancer patients with bone metastasis compared with localized diseases. Neutralizing antibodies against CCL2 also inhibited the tumor conditioned media-induced osteoclast formation in vitro and bone metastasis in vivo (17). Taken together, these findings suggested a role of CCL2 in bone metastasis.A potential role of CCL2 in breast cancer progression and metastasis has been indicated by the analysis of CCL2 expression of tumor and serum samples from breast cancer patients. Serum CCL2 levels were significantly higher in postmenopausal breast cancer patients than in age-matched controls (21). Over 50% of breast cancer tumor samples had intense staining of CCL2 in tumor cells (22). Prognostic analysis further revealed that high expression of CCL2 was correlated with advanced tumor stage, lymph node metastasis (23), and early relapse (24). CCL2 up-regulation in breast tumors was also associated with the infiltration of tissue-associated macrophages (TAMs)3 and with increased microvessel density (22, 24). TAMs have been known to contribute to primary tumor progression and metastasis of breast cancer (25), which is supported by epidemiological evidence showing that TAM infiltration portended a poor clinical outcome (26, 27). However, whether the function of CCL2 in modulating activity of macrophages and possibly other cell types is important for breast tumor organotropic metastasis has not been rigorously investigated. CCL2 may engage organ-specific cell types derived from the same bone marrow myelomonocytic progenitors. These progenitors differentiate into osteoclast precursors in bone or into blood monocytes that eventually become mature macrophages in different tissues, like alveolar macrophages in lung (28). These stromal cell types of myelomonocytic origin may contribute to different functions in different organ-specific metastases. Another unresolved question regarding the function of CCL2 in tumor-stroma interaction is the functional involvement of CCL2 receptors. CCL2 can bind to both CCR2 and CCR4 (29, 30). Loss of function studies in mice showed CCL2 and CCR2 knock-out mice displayed similar impairments in monocyte migration (31, 32), suggesting that CCR2 is the major functional receptor for CCL2. Understanding whether CCR2 deficiency in stromal cells leads to compromised monocyte engagement by CCL2-expressing tumor cells may have important implications in designing targeting therapeutics against the CCL2/CCR2 axis.In this study, we used the recently developed organ-specific metastatic sublines of the human breast cancer cell MDA-MB-231 (9, 10, 33) and showed that overexpression of CCL2 promotes both lung and bone metastases. This function was associated with increased TAM infiltration in lung metastasis and increased osteoclast differentiation in bone metastasis, respectively. Furthermore, by using macrophages and bone marrow cells isolated from wild type, CCL2-deficient, and CCR2-deficient mice, we showed that CCR2 expression in stromal cells is essential for tumor-derived CCL2 to recruit macrophages and promote osteoclastogenesis. Targeting tumor-derived CCL2 by a neutralizing antibody significantly reduced metastasis formation in both bone and lung.  相似文献   

17.
Antibodies that target immune checkpoint proteins such as programmed cell death protein 1, programmed death ligand 1, and cytotoxic T-lymphocyte–associated antigen 4 in human cancers have achieved impressive clinical success; however, a significant proportion of patients fail to respond to these treatments. Galectin-9 (Gal-9), a β-galactoside-binding protein, has been shown to induce T-cell death and facilitate immunosuppression in the tumor microenvironment by binding to immunomodulatory receptors such as T-cell immunoglobulin and mucin domain–containing molecule 3 and the innate immune receptor dectin-1, suggesting that it may have potential as a target for cancer immunotherapy. Here, we report the development of two novel Gal-9-neutralizing antibodies that specifically react with the N-carbohydrate-recognition domain of human Gal-9 with high affinity. We also show using cell-based functional assays that these antibodies efficiently protected human T cells from Gal-9-induced cell death. Notably, in a T-cell/tumor cell coculture assay of cytotoxicity, these antibodies significantly promoted T cell-mediated killing of tumor cells. Taken together, our findings demonstrate potent inhibition of human Gal-9 by neutralizing antibodies, which may open new avenues for cancer immunotherapy.  相似文献   

18.
Recent data strongly support the idea that the orchestrated interaction between cancer and other cells in the tumor microenvironment is a vital component in the neoplastic process. Thus, tumor cells take advantage of the signaling molecules of the immune system to proliferate, survive, and invade other tissues. CCL2 (Chemokine (C-C motif) ligand 2, Monocyte chemoattractant protein-1 (MCP-1) has been demonstrated to play a significant role in prostate cancer neoplasia and invasion, and is highly expressed in the tumor microenvironment. We recently reported that CCL2 elicits a strong survival advantage in prostate cancer PC3 cells through PI3K/Akt-dependent regulation of autophagy via the mammalian target of rapamycin (mTOR) pathway and importantly, survivin upregulation is essential in this survival mechanism. Autophagy protects cells from nutrient depletion stress, but, paradoxically, excessive autophagy will result in cell death. How these life or death decisions are regulated remains unclear. Here we discuss the function of survivin in the control of autophagy and the interaction between CCL2, survivin and autophagy in the complex program of tumor progression.  相似文献   

19.
Stromal chemokine gradients within the breast tissue microenvironment play a critical role in breast cancer cell invasion, a prerequisite to metastasis. To elucidate which chemokines and mechanisms are involved in mammary cell migration we determined whether mesenchymal D1 stem cells secreted specific chemokines that differentially promoted the invasion of mammary tumor cells in vitro. Results indicate that mesenchymal D1 cells produced concentrations of CCL5 and CCL9 4- to 5-fold higher than the concentrations secreted by 4T1 tumor cells (P < 0.01). Moreover, 4T1 tumor cell invasion toward D1 mesenchymal stem cell conditioned media (D1CM), CCL5 alone, CCL9 alone or a combination CCL5 and CCL9 was observed. The invasion of 4T1 cells toward D1 mesenchymal stem CM was dose-dependently suppressed by pre-incubation with the CCR1/CCR5 antagonist met-CCL5 (P < 0.01). Furthermore, the invasion of 4T1 cells toward these chemokines was prevented by incubation with the broad-spectrum MMP inhibitor GM6001. Additionally, the addition of specific MMP9/MMP13 and MMP14 inhibitors prevented the MMP activities of supernatants collected from 4T1 cells incubated with D1CM, CCL5 or CCL9. Taken together these data highlight the role of CCL5 and CCL9 produced by mesenchymal stem cells in mammary tumor cell invasion.  相似文献   

20.
MicroRNA-181 (miR-181) is a multifaceted miRNA that has been implicated in many cellular processes such as cell fate determination and cellular invasion. While miR-181 is often overexpressed in human tumors, a direct role for this miRNA in breast cancer progression has not yet been characterized. In this study, we found this miRNA to be regulated by both activin and TGFβ. While we found no effect of miR-181 modulation on activin/TGFβ-mediated tumor suppression, our data clearly indicate that miR-181 plays a critical and prominent role downstream of two growth factors, in mediating their pro-migratory and pro-invasive effects in breast cancer cells miR-181 acts as a metastamir in breast cancer. Thus, our findings define a novel role for miR-181 downstream of activin/TGFβ in regulating their tumor promoting functions. Having defined miR-181 as a critical regulator of tumor progression in vitro, our results thus, highlight miR-181 as an important potential therapeutic target in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号