首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC.  相似文献   

2.
The role of microRNA-30a (miR-30a) deregulation in tumor progression and its downstream signaling pathways remain unknown. Here we confirmed significant downregulation of miR-30a in hepatocellular carcinoma (HCC) tissues and cell lines compared with non-tumor counterparts. MiR-30a downregulation was significantly associated with worse disease-free survival (DFS) of HCC patients. Gain- and loss-of-function studies revealed that downregulation of miR-30a facilitated tumor cell migration, invasion and epithelial–mesenchymal transition (EMT). We identified SNAI1 as a direct target of miR-30a and demonstrated miR-30a as a novel regulator of EMT by targeting SNAI1, indicating its potential therapeutic value for reducing invasion and metastasis of HCC.  相似文献   

3.
Protocadherin 9 (PCDH9) was found frequently lost in hepatocellular carcinoma (HCC). Here we investigated the role of PCDH9 in the development of HCC. We confirmed that PCDH9 was down-regulated in HCC tissues and cell lines compared with the adjacent non-tumor tissues. PCDH9 downregulation was significantly associated with malignant portal vein invasion of HCC patients. Gain- and loss-of-function studies revealed that downregulation of PCDH9 facilitated tumor cell migration and epithelial–mesenchymal transition (EMT). We identified PCDH9 as a novel regulator of EMT by increasing the activity of GSK-3β and inhibiting Snail1, indicating its potential therapeutic value for reducing metastasis of HCC.  相似文献   

4.
摘要 目的:探究SIRT7基因琥珀酰化修饰对肝癌患者的生存、免疫浸润及预后的相关性分析。方法:采用生物信息分析法对SIRT7在肝癌组织中的表达情况及其对肝癌患者预后的影响进行分析;采用蛋白免疫印迹法(Western blot)检测其转染效果。结果:(1)生物信息分析结果显示:SIRT7在多种肿瘤(包括肝癌)组织中呈高表达(P<0.05);SIRT7的表达与肿瘤的生存曲线相关(P<0.05);肝癌患者的SIRT7相对表达量与其预后相关,高表达组肝癌患者的总生存情况(P=0.017)和无进展生存情况较低表达组缩短(P=0.004);免疫浸润和肿瘤微环境分析结果显示,SIRT7表达水平与多数免疫细胞浸润水平、肿瘤微环境(ESTIMATES core)均有明显负相关。(2)Western blot显示,SIRT7在肝癌细胞中表达高于正常细胞。因此,SIRT7 可作为肝癌的潜在预后标志物。结论:SIRT7表达水平与肝癌(HCC)患者的预后、免疫细胞浸润性、肿瘤微环境免疫细胞和基质细胞浸润等相关。  相似文献   

5.
6.
肝细胞癌(hepatocellular carcinoma, HCC)是世界上最常见的癌症之一.然而,就目前现状而言,HCC的治疗效果还很有限.作为一个依赖于烟酰胺腺嘌呤二核苷酸(NAD+)的去乙酰化酶, SIRT1(silent mating type information regulation 2 homolog 1 )参与了代谢、应激反应、衰老以及肿瘤的演进等许多重要的生物学进程.临床研究显示,SIRT1在HCC患者中异常高表达,并可预测其不良预后;进一步的研究表明,SIRT1在HCC演进中发挥了关键作用,且作用范围广泛,分子机制复杂.这提示,SIRT1有望成为新的HCC治疗靶点和诊断、预后标志物.本文拟对SIRT1在HCC的演进和预后中的具体作用及其潜在分子机制作一总结,并就SIRT1作为肝癌治疗靶点和诊断、预后标志物的可行性做出探讨.  相似文献   

7.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer. In this study, we analyzed the proteome and K-acetylome in eight pairs of HCC tumors and normal adjacent tissues using a timsTOF Pro instrument. As a result, we identified 9219 K-acetylation sites in 2625 proteins, of which 1003 sites exhibited differential acetylation levels between tumors and normal adjacent tissues. Interestingly, many novel tumor-specific K-acetylation sites were characterized, for example, filamin A (K865), filamin B (K697), and cofilin (K19), suggesting altered activities of these cytoskeleton-modulating molecules, which may contribute to tumor metastasis. In addition, we observed an overall suppression of protein K-acetylation in HCC tumors, especially for enzymes from various metabolic pathways, for example, glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Moreover, the expression of deacetylase sirtuin 2 (SIRT2) was upregulated in HCC tumors, and its role of deacetylation in HCC cells was further explored by examining the impact of SIRT2 overexpression on the proteome and K-acetylome in Huh7 HCC cells. SIRT2 overexpression reduced K-acetylation of proteins involved in a wide range of cellular processes, including energy metabolism. Furthermore, cellular assays showed that overexpression of SIRT2 in HCC cells inhibited both glycolysis and oxidative phosphorylation. Taken together, our findings provide valuable information to better understand the roles of K-acetylation in HCC and to treat this disease by correcting the aberrant acetylation patterns.  相似文献   

8.
Peroxisomes account for ~35% of total H2O2 generation in mammalian tissues. Peroxisomal ACOX1 (acyl‐CoA oxidase 1) is the first and rate‐limiting enzyme in fatty acid β‐oxidation and a major producer of H2O2. ACOX1 dysfunction is linked to peroxisomal disorders and hepatocarcinogenesis. Here, we show that the deacetylase sirtuin 5 (SIRT5) is present in peroxisomes and that ACOX1 is a physiological substrate of SIRT5. Mechanistically, SIRT5‐mediated desuccinylation inhibits ACOX1 activity by suppressing its active dimer formation in both cultured cells and mouse livers. Deletion of SIRT5 increases H2O2 production and oxidative DNA damage, which can be alleviated by ACOX1 knockdown. We show that SIRT5 downregulation is associated with increased succinylation and activity of ACOX1 and oxidative DNA damage response in hepatocellular carcinoma (HCC). Our study reveals a novel role of SIRT5 in inhibiting peroxisome‐induced oxidative stress, in liver protection, and in suppressing HCC development.  相似文献   

9.
Accumulating evidence(s) indicate that CXCL12-CXCR4 signaling cascade plays an important role in the process of invasion and metastasis that accounts for more than 80% of deaths in hepatocellular carcinoma (HCC) patients. Thus, identification of novel agents that can downregulate CXCR4 expression and its associated functions have a great potential in the treatment of metastatic HCC. In the present report, we investigated an anthraquinone derivative, emodin for its ability to affect CXCR4 expression as well as function in HCC cells. We observed that emodin downregulated the expression of CXCR4 in a dose-and time-dependent manner in HCC cells. Treatment with pharmacological proteasome and lysosomal inhibitors did not have substantial effect on emodin-induced decrease in CXCR4 expression. When investigated for the molecular mechanism(s), it was observed that the suppression of CXCR4 expression was due to downregulation of mRNA expression, inhibition of NF-κB activation, and abrogation of chromatin immunoprecipitation activity. Inhibition of CXCR4 expression by emodin further correlated with the suppression of CXCL12-induced migration and invasion in HCC cell lines. In addition, emodin treatment significantly suppressed metastasis to the lungs in an orthotopic HCC mice model and CXCR4 expression in tumor tissues. Overall, our results show that emodin exerts its anti-metastatic effect through the downregulation of CXCR4 expression and thus has the potential for the treatment of HCC.  相似文献   

10.
The poor prognosis of hepatocellular carcinoma (HCC) is mainly due to the development of invasion and metastasis. Recent data strongly suggests the important role of miRNAs in cancer progression, including invasion and metastasis. Here, we found miR-217 expression was much lower in highly invasive MHCC-97H HCC cells and metastatic HCC tissues. Restored miR-217 expression with miR-217 mimics inhibited invasion of MHCC-97H cells. Inversely, miR-217 inhibition enhanced the invasive ability of Huh7 and MHCC-97L cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated E2F3 was a novel direct target of miR-217. Moreover, E2F3 protein level was positively associated with HCC metastasis and functional analysis confirmed the positive role of E2F3 in HCC cell invasion. Our findings suggest miR-217 function as a potential tumor suppressor in HCC progression and miR-217-E2F3 axis may be a novel candidate for developing rational therapeutic strategies.  相似文献   

11.
12.
Osteosarcoma is the most common malignant bone cancer that mainly affects children and young adults. Recently, the NAD+-dependent deacetylase, sirtuin 1 (SIRT1), has been reported to play a key role in the development of malignant tumors. The study aimed to investigate the role of SIRT1 in osteosarcoma and explore its underlying oncogenic mechanisms. The prognostic value of SIRT1 in osteosarcoma was assessed through detection of SIRT1 expression based on osteosarcoma biopsy tissue. Then, to further investigate the effect of SIRT1 in osteosarcoma, osteosarcoma cells were treated with small interfering RNA SIRT1 and overexpressed SIRT1 to detect the cell migration, invasion, and epithelial-mesenchymal transition (EMT). The levels of SIRT1 expression were significantly higher in osteosarcoma tissues than those in adjacent normal tissues, and the SIRT1 protein level may be coupled with metastatic and poor prognosis risk in patients with osteosarcoma. Moreover, SIRT1 silencing inhibited the migration as well as invasion ability of osteosarcoma cells in vitro, and SIRT1 upregulation reversed those effects. Finally, we found that SIRT1-ZEB1-positive feedback enhanced the EMT process and metastasis of osteosarcoma. Altogether, the results of the current study revealed that high levels of SIRT1 might be a biomarker for a high metastatic rate in patients with osteosarcoma, which suggested that inhibition of SIRT1 might be promising for the therapeutics of osteosarcoma.  相似文献   

13.
Hepatocellular carcinoma (HCC), with life‐threatening malignant behaviours, often develops distant metastases and is the fourth most common primary cancer in the world, having taken millions of lives in Asian countries such as China. The novel miR‐3677‐3p is involved in a high‐expression‐related poor prognosis in HCC tissues and cell lines, indicating oncogenesis functions in vitro and in vivo. Initially, we confirmed the inhibition of proliferation, migration and invasion in miR‐3677‐3p knock‐down MHCC‐97H and SMMC‐7721 cell lines, which are well known for their high degree of invasiveness. Then, we reversed the functional experiments in the low‐miR‐3677‐3p‐expression Hep3B cell line via overexpressing miR‐3677‐3p. In nude mice xenograft and lung metastasis assays, we found suppressor behaviours, smaller nodules and low density of organ spread, after injection of cells transfected with shRNA‐miR‐3677‐3p. A combination of databases (Starbase, TargetScan and MiRgator) illustrated miR‐3677‐3p targets, and it was shown to suppress the expression of SIRT5 in a dual‐luciferase reporter system. To clarify the conclusions of previous ambiguous research, we up‐regulated SIRT5 in Hep3B cells, and rescue tests were established for confirmation that miR‐3677‐3p suppresses SIRT5 to enhance the migration and invasion of HCC. Interestingly, we discovered hypoxia‐induced miR‐3677‐3p up‐regulation benefited HCC malignancy and invasiveness. In conclusion, the overexpression of miR‐3677‐3p mediated SIRT5 inhibition, which could increase proliferation, migration and invasion of HCC in hypoxic microenvironments.  相似文献   

14.
Hepatocellular carcinoma (HCC) is one of the most common cancers with high prevalence and mortality, and it has brought huge economic and health burden for the world. It is urgent to found novel targets for HCC diagnosis and clinical intervention. Circular RNA (circRNA) has been reported to participate in many cancer progressions including HCC, suggesting that circRNA might paly essential role in HCC initiation and progression. Our study aims to found that potential circRNA participates in HCC development and its underlying molecular mechanisms. We obtained three pairs of HCC tissues and its adjacent normal tissues data from GEO DataSets. MTT, cell colony, EdU, wound-healing, transwell invasion and mouse xenograft model assays were used to demonstrate the biological functions of circCAMSAP1 in HCC progression. Furthermore, we conducted bioinformatics analysis, AGO2-RIP, RNA pull-down and luciferase reporter assays to assess the association of circCAMSAP1-miR-1294-GRAMD1A axis in HCC cells. The expression of circCAMSAP1 was up-regulated in HCC tissues compared with its adjacent normal tissues. Up-regulation of circCAMSAP1 promoted HCC biological functions both in vitro and in vivo. The promotive effects of circCAMSAP1 on HCC progression function through miR-1294/GRAMD1A pathway. CircCAMSAP1 was up-regulated in HCC tissues, and circCAMSAP1 up-regulated GRAMD1A expression to promote HCC proliferation, migration and invasion through miR-1294. CircCAMSAP1 might be a potential prognosis and therapeutic target for HCC.  相似文献   

15.
16.

Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors with high recurrence and metastasis rates. Radiotherapy represents a major therapeutic option for HCC patients. However, the efficacy of radiotherapy has been limited due to the development of intrinsic radioresistance of the tumor cells. Small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3), one member of SUMO pseudogene family, is a novel identified lncRNA that was originally identified to be upregulated in gastric cancer. However, the detailed roles of SUMO1P3 in HCC development remain to be elucidated. Here, the expression of SUMO1P3 in HCC tissues and cells was examined by qRT-PCR. Cell proliferation, colony formation ability, invasion ability, apoptosis, and radiosensitivity were detected by MTT assay, colony formation assay, cell invasion assay, flow cytometry analysis, and survival fraction assay, respectively. We found that SUMO1P3 was significantly upregulated in HCC tissues and cells. Besides, SUMO1P3 was highly expressed in HCC patients with higher TNM stage. Furthermore, SUMO1P3 knockdown markedly suppressed cell proliferation, colony formation ability, and cell invasiveness, promoted apoptosis, and enhanced radiosensitivity of HCC cells. We concluded that the knockdown of SUMO1P3 repressed tumor growth, invasion, promoted apoptosis, and enhanced radiosensitivity in HCC, providing evidence that SUMO1P3 might be a potential novel biomarker and a therapeutic target for HCC.

  相似文献   

17.
18.
Sulfiredoxin 1 (SRXN1) is a pivotal regulator of the antioxidant response in eukaryotic cells. However, the role of SRXN1 in hepatocellular carcinoma (HCC) is far from clear. The present study aims to elucidate whether SRXN1 participates in tumorigenesis and metastasis of HCC and to determine the molecular mechanisms. We found that SRXN1 expression was up‐regulated in HCC tissue samples and correlated with poor prognosis in HCC patients. We also observed that SRXN1 knockdown by transient siRNA transfection inhibited HCC cell proliferation, migration and invasion. Overexpression of SRXN1 increased HCC cell migration and invasion. B‐cell translocation gene 2 (BTG2) was identified as a downstream target of SRXN1. Mechanistic studies revealed that SRXN1‐depleted reactive oxygen species (ROS) modulated migration and invasion of HCC cells. In addition, the ROS/p65/BTG2 signalling hub was found to regulate the epithelial‐mesenchymal transition (EMT), which mediates the pro‐metastasis role of SRXN1 in HCC cells. In vivo experiments showed SRXN1 promotes HCC tumour growth and metastasis in mouse subcutaneous xenograft and metastasis models. Collectively, our results revealed a novel pro‐tumorigenic and pro‐metastatic function of SRXN1 in HCC. These findings demonstrate a rationale to exploit SRXN1 as a therapeutic target effectively preventing metastasis of HCC.  相似文献   

19.
Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. It has been shown that long noncoding RNA (lncRNA) might play a role in HCC. The aim of the present study was to identify the role of long intergenic noncoding RNA 01551 (LINC01551) in the HCC development and explore the underlying mechanism of LINC01551/miR-122-5p/ADAM10 axis. The differentially expressed lncRNAs associated with HCC were screened out by a microarray analysis. The expression of LINC01551, miR-122-5p, and ADAM10 was determined in HCC tissues and cells. The potential miRNA (miR-122-5p) regulated by LINC01551 was explored, and the target relationship between miR-122-5p and ADAM10 was confirmed. To evaluate the effect of LINC01551 and miR-122-5p on proliferation, migration, invasion, and apoptosis of HCC, different plasmids were delivered into MHCC97-H cells. High expression of LINC01551 and ADAM10 yet low-expression of miR-122-5p were revealed in HCC tissues and cells. Overexpression of miR-122-5p could downregulate ADAM10. Biological prediction websites and fluorescence in situ hybridization assay verified that LINC01551 was mainly expressed in the cytoplasm. Silencing LINC01551 reduced HCC cell viability, proliferation, migration, invasion, and cell cycle entry yet induce cell apoptosis. Upregulation of LINC01551 increased its ability of competitively binding to miR-122-5p, thus reducing miR-122-5p and upregulating ADAM10 expression, as well as promoting the proliferative, migrative, and invasive ability. Taken together the results, it is highly possible that LINC01551 functions as an competing endogenous RNA (ceRNA) to regulate the miRNA target ADAM10 by sponging miR-122-5p and therefore promotes the development of HCC, highlighting a promising competitive new target for the HCC treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号