首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integuments of extant vertebrates display a variety of epidermalappendages whose patterns, morphology and terminal differentiation(epidermal keratins) depend upon interactions between ectodermal(epidermis) and mesodermal (dermis) tissues. In reptiles andbirds, appendage morphogenesis precedes terminal differentiation.Studies have demonstrated that appendage morphogenesis influencesthe expression of the appendage specific keratin genes. However,little is known about the nature of the structural genes expressedby the epidermal appendages of reptiles. How pattern formationand/or appendage morphogenesis influence terminal differentiationof reptilian appendages is not known. The epidermal appendages of reptiles and birds are characterizedby the presence of both alpha () and beta (ß) typekeratin proteins. Studies have focused on the genes of avianß keratins because they are the major structural proteinsof feathers. The occurrence of ß keratin proteinsin the scales and claws of both birds and reptiles and theirimmunological cross-reactivity suggest that the genes for reptilianß keratins may be homologous with those of birds.In bird appendages, the ß keratins are the productsof a large family of homologous genes. Specific members of thisgene family are expressed during the development of each appendage.Recent sequence analyses of feather ß keratins, fromdifferent orders of birds, demonstrate that there is more diversityat the DNA level than was implied by earlier protein sequencingstudies. Immunological techniques show that the same antibodies thatreact with the epidermal ß keratins of the chicken(Gallus domesticus) react with the epidermal ß keratinsof American alligators (Alligator mississippiensis). Furthermore,a peptide sequence (20 amino acids) from an alligator claw ßkeratin is similar to a highly conserved region of avian claw,scale, feather, and feather-like ß keratins. Theseobservations suggest that the ß keratin genes of avianepidermal appendages have homologues in the American alligator.Understanding the origin and evolution of the ß keratingene families in reptiles and birds will undoubtedly add toour understanding of the evolution of skin appendages such asscales and feathers.  相似文献   

2.
3.
The integumentary musculature of birds consists of three distinct components. The smooth musculature comprises feather and apterial muscles, which form a continuous musculo-elastic layer within the dermis. The feather muscles, which consistently include at least erectors and depressors, interconnect contour feathers within pterylae (i.e., feather tracts) along gridlines that are oriented diagonally to the longitudinal and transverse axes of the body. The apterial muscles interconnect pterylae by attaching to the contour feathers along their peripheries. The striated musculature is composed of individual subcutaneous muscles, most of which attach to contour feathers along the caudal periphery of pterylae A new integrative functional analysis of the integumentary musculature proposes how apterial muscles stabilize the pterylae and modulate the tension of the musculo-elastic layer, and how subcutaneous muscles provide the initial stimulus for erector muscles being able to ruffle the contour feathers within pterylae. It also shows how the arrangement of the contour feathers and integumentary muscles reflects the stresses and strains that act on the avian skin. These mechanical forces are in effect not only in the adult, especially during flight, but may also be active during feather morphogenesis. The avian integument with its complex structural organization may, therefore, represent an excellent model for analyzing the nature of interactions between the environment and genetic material. The predictions of our model are testable, and our study demonstrates the relevance of integrated analyses of complex organs as mechanically coherent systems for evolutionary and developmental biology.  相似文献   

4.
Darwin's theory describes the principles that are responsible for evolutionary change of organisms and their attributes. The actual mechanisms, however, need to be studied for each species and each organ separately. Here we have investigated the mechanisms underlying these principles in the avian feather. Feathers comprise one of the most complex and diverse epidermal organs as demonstrated by their shape, size, patterned arrangement and pigmentation. Variations can occur at several steps along each level of organization, leading to highly diverse forms and functions. Feathers develop gradually during ontogeny through a series of steps that may correspond to the evolutionary steps that were taken during the phylogeny from a reptilian ancestor to birds. These developmental steps include 1) the formation of feather tract fields on the skin surfaces; 2) periodic patterning of the individual feather primordia within the feather tract fields; 3) feather bud morphogenesis establishing anterio-posterior (along the cranio-caudal axis) and proximo-distal axes; 4) branching morphogenesis to create the rachis, barbs and barbules within a feather bud; and 5) gradual modulations of these basic morphological parameters within a single feather or across a feather tract. Thus, possibilities for variation in form and function of feathers occur at every developmental step. In this paper, principles guiding feather tract formation, distributions of individual feathers within the tracts and variations in feather forms are discussed at a cellular and molecular level.  相似文献   

5.
The discovery of several dinosaurs with filamentous integumentary appendages of different morphologies has stimulated models for the evolutionary origin of feathers. In order to understand these models, knowledge of the development of the avian integument must be put into an evolutionary context. Thus, we present a review of avian scale and feather development, which summarizes the morphogenetic events involved, as well as the expression of the beta (beta) keratin multigene family that characterizes the epidermal appendages of reptiles and birds. First we review information on the evolution of the ectodermal epidermis and its beta (beta) keratins. Then we examine the morphogenesis of scutate scales and feathers including studies in which the extraembryonic ectoderm of the chorion is used to examine dermal induction. We also present studies on the scaleless (sc) mutant, and, because of the recent discovery of "four-winged" dinosaurs, we review earlier studies of a chicken strain, Silkie, that expresses ptilopody (pti), "feathered feet." We conclude that the ability of the ectodermal epidermis to generate discrete cell populations capable of forming functional structural elements consisting of specific members of the beta keratin multigene family was a plesiomorphic feature of the archosaurian ancestor of crocodilians and birds. Evidence suggests that the discrete epidermal lineages that make up the embryonic feather filament of extant birds are homologous with similar embryonic lineages of the developing scutate scales of birds and the scales of alligators. We believe that the early expression of conserved signaling modules in the embryonic skin of the avian ancestor led to the early morphogenesis of the embryonic feather filament, with its periderm, sheath, and barb ridge lineages forming the first protofeather. Invagination of the epidermis of the protofeather led to formation of the follicle providing for feather renewal and diversification. The observations that scale formation in birds involves an inhibition of feather formation coupled with observations on the feathered feet of the scaleless (High-line) and Silkie strains support the view that the ancestor of modern birds may have had feathered hind limbs similar to those recently discovered in nonavian dromaeosaurids. And finally, our recent observation on the bristles of the wild turkey beard raises the possibility that similar integumentary appendages may have adorned nonavian dinosaurs, and thus all filamentous integumentary appendages may not be homologous to modern feathers.  相似文献   

6.
To examine the role of development in the origin of evolutionary novelties, we investigated the developmental mechanisms involved in the formation of a complex morphological novelty-branched feathers. We demonstrate that the anterior-posterior expression polarity of Sonic hedgehog (Shh) and Bone morphogenetic protein 2 (Bmp2) in the primordia of feathers, avian scales, and alligator scales is conserved and phylogenetically primitive to archosaurian integumentary appendages. In feather development, derived patterns of Shh-Bmp2 signaling are associated with the development of evolutionarily novel feather structures. Longitudinal Shh-Bmp2 expression domains in the marginal plate epithelium between barb ridges provide a prepattern of the barbs and rachis. Thus, control of Shh-Bmp2 signaling is a fundamental component of the mechanism determining feather form (i.e., plumulaceous vs. pennaceous structure). We show that Shh signaling is necessary for the formation and proper differentiation of a barb ridge and that it is mediated by Bmp signaling. BMP signaling is necessary and sufficient to negatively regulate Shh expression within forming feather germs and this epistatic relationship is conserved in scale morphogenesis. Ectopic SHH and BMP2 signaling leads to opposing effects on proliferation and differentiation within the feather germ, suggesting that the integrative signaling between Shh and Bmp2 is a means to regulate controlled growth and differentiation of forming skin appendages. We conclude that Shh and Bmp signaling is necessary for the formation of barb ridges in feathers and that Shh and Bmp2 signaling constitutes a functionally conserved developmental signaling module in archosaur epidermal appendage development. We propose a model in which branched feather form evolved by repeated, evolutionary re-utilization of a Shh-Bmp2 signaling module in new developmental contexts. Feather animation Quicktime movies can be viewed at http://fallon.anatomy.wisc.edu/feather.html.  相似文献   

7.
Wnt signaling in skin organogenesis   总被引:3,自引:0,他引:3  
While serving as the interface between an organism and its environment, the skin also can elaborate a wide range of skin appendages to service specific purposes in a region-specific fashion. As in other organs, Wnt signaling plays a key role in regulating the proliferation, differentiation and motility of skin cells during their morphogenesis. Here I will review some of the recent work that has been done on skin organogenesis. I will cover dermis formation, the development of skin appendages, cycling of appendages in the adult, stem cell regulation, patterning, orientation, regional specificity and modulation by sex hormone nuclear receptors. I will also cover their roles in wound healing, hair regeneration and skin related diseases. It appears that Wnt signaling plays essential but distinct roles in different hierarchical levels of morphogenesis and organogenesis. Many of these areas have not yet been fully explored but are certainly promising areas of future research.Key words: morphogenesis, hair, feathers, tracts, epithelium-mesenchyme interactions, Wnt signaling pathwayThe integument forms the interface between an organism and its environment.1,2 As such it protects against dehydration, infection, temperature extremes, etc while providing a means for display, camouflage and other functions.3 The skin can elaborate remarkable structural diversity producing specialized functions in a region-specific fashion to provide organisms with a selective advantage. For example, the development of feathers led to the acquisition of flight in birds and the formation of mammary glands enabled mammals to nurse their young.4 The advantage of these evolutionary developments can be seen by the number of birds and mammals present today.Skin appendages, such as skin, hairs, feathers, scales, glands and teeth grow from the epithelium as a result of epithelial-mesenchymal interactions,5 largely in response to common molecular signals with slight variations in their placement and timing during tissue morphogenesis.6 Theoretically, stem cells are totipotent and progressively can be guided toward their specific fates by exposure to specific regulatory signals. The juxtaposition of molecular signals or lack thereof may have a tremendous impact on cell fate decisions. Hence, the difference between skin appendages is due to the topological arrangement of the epithelia during developmental processes. These are presumably regulated by adhesion molecules whose expression is controlled by signaling molecules as well as by physical constraints.Hairs and feathers are attractive model systems for experimental research because of their ability for seasonal or periodic renewal. Obviously not all hairs or feathers are replaced at one time or birds would lose all of their feathers at once and fall from the sky in mid-flight; rather hairs and feathers are replaced over a period of time in a wave-like pattern.7 Yet this cycling behavior enables thousands of entirely new organs to be regenerated again and again throughout these animal''s lives. Hairs and feathers demonstrate an incredible diversity of forms arising in different locations over the body surface. For instance, hairs on the scalp, face and body differ in size, coarseness, color, etc. This regional specificity indicates that in each cycle skin stem cells are directed to form distinct structures through a series of molecular and cellular interactions.  相似文献   

8.
9.
Selective cell death by apoptosis plays important roles in organogenesis. Apoptotic cells are observed in the developmental and homeostatic processes of several ectodermal organs, such as hairs, feathers, and mammary glands. In chick feather development, apoptotic events have been observed during feather morphogenesis, but have not been investigated during early feather bud formation. Previously, we have reported a method for generating feather buds on a bioengineered skin from dissociated skin epithelial and mesenchymal cells in three-dimensional culture. During the development of the bioengineered skin, epithelial cavity formation by apoptosis was observed in the epithelial tissue. In this study, we examined the selective epithelial cell death during the bioengineered skin development. Histological analyses suggest that the selective epithelial cell death in the bioengineered skin was induced by caspase-3-related apoptosis. The formation of feather buds of the bioengineered skin was disturbed by the treatment with a pan-caspase inhibitor. The pan-caspase inhibitor treatment suppressed the rearrangement of the epithelial layer and the formation of dermal condensation, which are thought to be essential step to form feather buds. The suppression of the formation of feather buds on the pan-caspase inhibitor-treated skin was partially compensated by the addition of a GSK-3β inhibitor, which activates Wnt/β-catenin signaling. These results suggest that the epithelial cell death is involved in the formation of feather buds of the bioengineered skin. These observations also suggest that caspase activities and Wnt/β-catenin signaling may contribute to the formation of epithelial and mesenchymal components in the bioengineered skin.  相似文献   

10.
Feathers are the most complex epidermal derivatives among vertebrates. The present review deals with the origin of feathers from archosaurian reptiles, the cellular and molecular aspects of feather morphogenesis, and focus on the synthesis of keratins and associated proteins. Feathers consist of different proteins among which exists a specialized group of small proteins called beta-keratins. Genes encoding these proteins in the chick genome are distributed in different chromosomes, and most genes encode for feather keratins. The latter are here recognized as proteins associated with the keratins of intermediate filaments, and functionally correspond to keratin-associated proteins of hairs, nails and horns in mammals. These small proteins possess unique properties, including resistance and scarce elasticity, and were inherited and modified in feathers from ancestral proteins present in the scales of archosaurian progenitors of birds. The proteins share a common structural motif, the core box, which was present in the proteins of the reptilian ancestors of birds. The core box allows the formation of filaments with a different molecular mechanism of polymerization from that of alpha-keratins. Feathers evolved after the establishment of a special morphogenetic mechanism gave rise to barb ridges. During development, the epidermal layers of feathers fold to produce barb ridges that produce the ramified structure of feathers. Among barb ridge cells, those of barb and barbules initially accumulate small amounts of alpha-keratins that are rapidly replaced by a small protein indicated as “feather keratin”. This 10 kDa protein becomes the predominant form of corneous material of feathers. The main characteristics of feather keratins, their gene organization and biosynthesis are similar to those of their reptilian ancestors. Feather keratins allow elongation of feather cells among supportive cells that later degenerate and leave the ramified microstructure of barbs. In downfeathers, barbs are initially independent and form plumulaceous feathers that rest inside a follicle. Stem cells remain in the follicle and are responsible for the regeneration of pennaceous feathers. New barb ridges are produced and they merge to produce a rachis and a flat vane. The modulation of the growth pattern of barb ridges and their fusion into a rachis give rise to a broad variety of feather types, including asymmetric feathers for flight. Feather morphogenesis suggests possible stages for feather evolution and diversification from hair-like outgrowths of the skin found in fossils of pro-avian archosaurians.  相似文献   

11.
Morphogenesis and expression of the alpha and beta keratin polypeptides are controlled by epidermal-dermal interactions during development of avian skin derivatives. We have examined the relationship between morphogenesis of the embryonic feather and expression of the feather alpha and beta keratins by routine histology, indirect-immunofluorescence, and SDS-PAGE. Initially beta keratins are expressed only in the feather sheath. Following barb ridge morphogenesis beta keratins can be detected in the barb ridge, coincident with the differentiation of barb ridge cells into eight distinct morphological types. Beta keratinization occurs in gradients; from feather apex to base, and from periphery of the barb ridge to the interior. The onset of beta keratinization in the barb ridges is paralleled by an increase in the major feather beta keratin polypeptides, as detected by SDS-PAGE. The alpha keratins are present in both the periderm and feather sheath at early stages of feather development, but become greatly reduced after hatching, when the down feather emerges from the sheath.  相似文献   

12.
Retinoic acid-induced transformation of reticulate scales to feather-like structures (Dhouailly and Hardy, '78) provides a useful model to study biochemical differentiation in avian skin. In this study, immunofluorescent analysis of reticulate scale-feathers (RSFs) indicates that they contain beta keratin in feather barbs and, thus, are true feathers, biochemically. Epidermal cells that would otherwise produce only alpha keratin in reticulate scales are induced to reorganize and differentiate into barb ridge cells that accumulate feather beta keratins. The mechanism for these dramatic morphological and biosynthetic responses to retinoic acid is unknown.  相似文献   

13.
Integuments form the boundary between an organism and the environment. The evolution of novel developmental mechanisms in integuments and appendages allows animals to live in diverse ecological environments. Here we focus on amniotes. The major achievement for reptile skin is an adaptation to the land with the formation of a successful barrier. The stratum corneum enables this barrier to prevent water loss from the skin and allowed amphibian / reptile ancestors to go onto the land. Overlapping scales and production of beta-keratins provide strong protection. Epidermal invagination led to the formation of avian feather and mammalian hair follicles in the dermis. Both adopted a proximal - distal growth mode which maintains endothermy. Feathers form hierarchical branches which produce the vane that makes flight possible. Recent discoveries of feathered dinosaurs in China inspire new thinking on the origin of feathers. In the laboratory, epithelial - mesenchymal recombinations and molecular mis-expressions were carried out to test the plasticity of epithelial organ formation. We review the work on the transformation of scales into feathers, conversion between barbs and rachis and the production of "chicken teeth". In mammals, tilting the balance of the BMP pathway in K14 noggin transgenic mice alters the number, size and phenotypes of different ectodermal organs, making investigators rethink the distinction between morpho-regulation and pathological changes. Models on the evolution of feathers and hairs from reptile integuments are discussed. A hypothetical Evo-Devo space where diverse integument appendages can be placed according to complex phenotypes and novel developmental mechanisms is presented.  相似文献   

14.
Lorenzo Alibardi 《Protoplasma》2017,254(3):1259-1281
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3–4-nm-thick filaments through a different mechanism from that of 8–10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10–12 kDa containing 97–105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14–16 kDa made of 122–146 amino acids), claws and beak proteins (14–17 kDa proteins of 134–164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.  相似文献   

15.
Yue  Qingqi  Apprey  Victor  Bonney  George E 《BMC genetics》2005,6(1):1-5

Background

The genetics of plumage of Japanese quail is of interest both from a biological standpoint, for comparative studies between avian species, and from a zootechnical standpoint, for identifying commercial selection lines or crosses. There are only few plumage mutations reported in quail, and the present work describes a new color variant "rusty" and a new feather structure "curly", and their heredity from an F1 and F2 segregation experiment.

Results

Curly feathers result from abnormal early growth caused by transient joining of follicle walls of adjacent feathers around 10 days of age, but the expression of the trait is variable. Rusty plumage color results from the replacement of the wild-type plumage pattern on the tip of the feather by a reddish coloration, but the pigmentation of the bottom part of the feather is not affected. Two lines breeding true for the curly or the rusty phenotype were developed. Both characters are determined by autosomal recessive mutations which are independent. The curly mutation has also a positive effect on body weight at 5 weeks of age.

Conclusion

The curly line is a new model which may be used for further work on the growth of the feather, and the rusty mutation is a new addition to the panel of plumage mutations available for comparative studies in poultry, and more generally among avian species.  相似文献   

16.

Background

The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored.

Methodology/Principal Findings

We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu.

Conclusions/Significance

Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations.  相似文献   

17.
Organogenesis involves a series of dynamic morphogenesis and remodeling processes. Since feathers exhibit complex forms, we have been using the feather as a model to analyze how molecular pathways and cellular events are used. While several major molecular pathways have been studied, the roles of matrix degrading proteases and inhibitors in feather morphogenesis are unknown. Here we addressed this knowledge gap by studying the temporal and spatial expression of proteases and inhibitors in developing feathers using mammalian antibodies that cross react with chicken proteins. We also investigated the effect of protease inhibitors on feather development employing an in vitro feather bud culture system. The results show that antibodies specific for mammalian MMP2 and TIMP2 stained positive in both feather epithelium and mesenchyme. The staining co-localized in structures of E10-E13 developing feathers. Interestingly, MMP2 and TIMP2 exhibited a complementary staining pattern in developing E15 and E20 feathers and in maturing feather filaments. Although they exhibited a slight delay in feather bud development, similar patterns of MMP2 and TIMP2 staining were observed in in vitro culture explants. The broad spectrum pharmacological inhibitors AG3340 and BB103 (MMP inhibitors) but not Aprotinin (a plasmin inhibitor) showed a reversible effect on epithelium invagination and feather bud elongation. TIMP2, a physiological inhibitor to MMPs, exhibited a similar effect. Markers of feather morphogenesis showed that MMP activity was required for both epithelium invagination and mesenchymal cell proliferation. Inhibition of MMP activity led to an overall delay in the expression of molecules that regulate either early feather bud growth and/or differentiation and thereby produced abnormal buds with incomplete follicle formation. This work demonstrates that MMPs and their inhibitors are not only important in injury repair, but also in development tissue remodeling as demonstrated here for the formation of feather follicles.  相似文献   

18.
Selective Factors Associated with the Origin of Fur and Feathers   总被引:3,自引:3,他引:0  
Conventional wisdom notwithstanding, fur and feathers are unlikelyto have arisen in direct association with elevated metabolicrates in early mammals, birds, or their ancestors. A completeinsulative fur coat probably appeared first in the earliestmammals long after mammalian ancestors (therapsids) had attainedmammalian, or near-mammalian, metabolic rates. The evolutionof feathers was unlinked to the evolution of modern avian metabolicrates since early, fully flighted birds (i.e., Archaeopteryx)retained an ectothermic metabolic status. Recent claims of "feathereddinosaurs" should be regarded with caution.  相似文献   

19.
Summary Injection of retinoic acid (3×62.5 g or 3×125 g) into the amniotic sac of chick embryos between 10 and 12 days of incubation resulted in the formation of club-shaped feathers within the feather tracts, and the development of feathers in the scale-forming areas of the feet. The latter finding is interpreted as caused by a disturbance of the tissue interactions which occur in the skin of the feet at this time. The address for correspondence: Universitè Scientifique et Médicale de Grepoble, Laboratoire de Zoologie et Biologie animale, Boîte Postale no 53-Centre de Tri, F-38041 Grenoble Cedex, France  相似文献   

20.
Contour feathers cover most of the avian body and play critical roles in insulation, social communication, aerodynamics, and water repellency. Feather production is costly and the development of the optimum characteristics for each function may be constrained by limited resources or time, and possibly also lead to trade‐offs among the different characteristics. Populations exposed to different environmental conditions may face different selective pressures, resulting in differences in feather structure and coloration, particularly in species with large geographical distributions. Three resident populations of great tit Parus major L. from different latitudes differed in feather structure and coloration. Individuals from the central population exhibited less dense and longer contour feathers, with a higher proportion of plumulaceous barbs than either northern or southern birds, which did not differ in their feather structure. Ultraviolet reflectance and brightness of the yellow of the contour feathers of the breast was higher for the southern than for the northern population. Birds with greener plumage (higher hue) had less dense but longer feathers, independently of the population of origin. Differences in feather structure across populations appear to be unrelated to the contour feather colour characteristics except for hue. Nutritional and time constraints during molt might explain the pattern of feather structure, whereas varying sexual selection pressure might underlie the coloration patterns observed. Our results suggest that different selective pressures or constraints shape contour feather traits in populations exposed to varying environmental conditions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 82–91.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号