首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diphtheria toxin catalyzes the ADP-ribosylation of elongation factor 2 (EF-2) in eukaryotes and archaebacteria. As the reaction is strictly EF-2 specific and introduces two negative charges into the molecule, the resulting shift in the isoelectric point (pI) by 0.2 pH units was used to establish a new purification method for EF-2 from Sulfolobus acidocaldarius. The cells were lysed with dithiothreitol at pH 9 and EF-2 was purified by ammonium sulfate precipitation, gel filtration on Sephadex G-200, and three isoelectric focusing steps. The EF-2-containing fractions from the first isoelectric focusing step at pH 4-9 were refocused in a more narrow pH-gradient (pH 5-7). The EF-2 peak from the second step was eluted, collecting only the fractions above the pH region where ADP-ribosylated EF-2 would focus. The EF-2 was then ADP-ribosylated with diphtheria toxin and NAD and subjected to further isoelectric focusing (pH 5-7). The EF-2 was almost homogeneous since ADP-ribosylation had shifted it into a region of the pH gradient free of contaminating proteins. Diphtheria toxin was immobilized on CNBr-activated Sepharose to prevent a possible contamination by proteins from the diphtheria toxin preparation which might have the same pI as ADP-ribosylated EF-2. Finally, the ADP-ribosyl group was removed by equilibrium dialysis using diphtheria toxin and nicotinamide at pH 6.3. The obtained EF-2 was active in protein synthesis.  相似文献   

2.
Anti-[ADP-ribosylated elongation factor 2 (EF-2)] antiserum has been used to immunoprecipitate the modified form of EF-2 from polyoma-virus-transformed baby hamster kidney (pyBHK) cells [Fendrick, J. L. & Iglewski, W. J. (1989) Proc. Natl Acad. Sci. USA 86, 554-557]. This antiserum also immunoprecipitates a 32P-labelled protein of similar size to EF-2 from a variety of primary and continuous cell lines derived from many species of animals. One of these cell lines, chinese hamster ovary CHO-K1 cells was further characterized. The time course of labelling of ADP-ribosylated EF-2 with [32P]orthophosphate was similar in pyBHK cells and in CHO-K1 cells. The kinetics of labelling were more rapid for cells cultured in 2% serum than 10% serum, with incorporation of 32P reaching a maximum at 6 h and 10 h, respectively. EF-2 mutants of pyBHK and CHO-K1 cells resistant to diphtheria-toxin-catalyzed ADP-ribosylation of EF-2 remain sensitive to cellular ADP-ribosylation of EF-2. The 32P-labelled moiety of ADP-ribosylated EF-2 was digested by snake venom phosphodiesterase and the product was identified as AMP. The same 32P-labelled tryptic peptide was modified by toxin in wild-type EF-2 and by the cellular transferase in mutant EF-2. When purified EF-2 from pyBHK cells was incubated with [carbonyl-14C]nicotinamide and diphtheria toxin fragment A, under conditions for reversal of the ADP-ribosylation reaction, [14C]NAD was generated. The results suggest that cellular ADP-ribosylated EF-2 exists in a variety of cell types, and the ribosylated product is identical to that produced by toxin ADP-ribosylation of EF-2, except in diphthamide mutant cells. Studies with the mutant cell lines indicate that the toxin and the cellular transferase, however, recognize different determinants at the ADP-ribose acceptor site in EF-2. The cellular transferase does not require the diphthamide modification of the histidine ring in the amino acid sequence of EF-2 for the transfer of ADP-ribose to the ring. Therefore, we would expect the cellular transferase active site to be similar to, but not identical to, the critical amino acids demonstrated in the active site of diphtheria toxin and Pseudomonas exotoxin A.  相似文献   

3.
Samples of unmodified EF-2, EF-2 ADP-ribosylated with diphtheria toxin and NAD, and/or phosphorylated using ATP and the Ca(2+)-calmodulin dependent kinase III partially purified, were irradiated at 254 nm with 32P-labeled GDP or GTP, and analyzed by one- and two-dimensional gel electrophoresis. By this method we showed that unmodified EF-2 formed a stable complex with GDP but not with GTP, whereas phosphorylated EF-2 and ADP-ribosylated + phosphorylated EF-2 formed stable complexes even in the absence of irradiation, with GTP but not GDP. ADP-ribosylated EF-2 did not form stable complexes with either GDP or GTP. Prior ADP-ribosylation of EF-2 increased its ability to the phosphorylated. These results show that the structures of the two domains containing diphtamide 715 and the phosphorylatable threonines (between Ala 51 and Arg 60) are interdependent; modifications of these residues induce different conformational changes of EF-2 which alter the interactions of the factor with guanylic nucleotides as well with ribosomes.  相似文献   

4.
Diphtheria toxin fragment A is able to inhibit protein synthesis in the eukaryotic cell by ADP-ribosylating the diphthamide residue of elongation factor-2 (EF-2) [(1980) J. Biol. Chem. 255, 10710-10720]. The reaction requires NAD as ADP-ribose donor. This work reports on the capacity of an NAD analog, the nicotinamide 1-N6-ethenoadenine dinucleotide (epsilon NAD), to be a substrate of diphtheria toxin fragment A in the transferring reaction of the fluorescent moiety, the epsilon ADP-ribose, to the EF-2. As a consequence of the transfer of the epsilon ADP-ribosyl moiety to the EF-2, there is an increase in the emission intensity of the fluorophore and a blue shift in its emission maximum. The epsilon ADP-ribosylated EF-2, like ADP-ribosylated EF-2, retains the capacity to bind GTP and ribosome. The utility of introducing a fluorescent probe in a well defined point of the EF-2 molecule for conformational or binding studies is discussed.  相似文献   

5.
Studies of the GTPase domain of archaebacterial ribosomes   总被引:16,自引:0,他引:16  
Ribosomes from the methanogens Methanococcus vannielii and Methanobacterium formicicum catalyse uncoupled hydrolysis of GTP in the presence of factor EF-2 from rat liver (but not factor EF-G from Escherichia coli). In this assay, and in poly(U)-dependent protein synthesis, they were sensitive to thiostrepton. In contrast, ribosomes from Sulfolobus solfataricus did not respond to factor EF-2 (or factor EF-G) but possessed endogenous GTPase activity, which was also sensitive to thiostrepton. Ribosomes from the methanogens did not support (p)ppGpp production, but did appear to possess the equivalent of protein L11, which in E. coli is normally required for guanosine polyphosphate synthesis. Protein L11 from E. coli bound well to 23S rRNA from all three archaebacteria (as did thiostrepton) and oligonucleotides protected by the protein were sequenced and compared with rRNA sequences from other sources.  相似文献   

6.
7.
Heterogeneity of native rat liver elongation factor 2   总被引:1,自引:0,他引:1  
The high heterogeneity of native rat liver EF-2 prepared from either 105000 x g supernatant or microsome high-salt extract was detected by two-dimensional equilibrium isoelectric focusing-SDS-polyacrylamide gel electrophoresis in the presence of 9.5 M urea. Five spots were always detected, all of Mr 95,000, which were not artefactual for their amount varied when EF-2 was specifically ADP-ribosylated by diphtheria toxin in the presence of NAD+, and/or phosphorylated on a threonine residue by a Ca2+/calmodulin-dependent protein kinase (most likely Ca2+/calmodulin-dependent protein kinase III described by others [(1987) J. Biol. Chem. 262, 17299-17303; (1988) Nature 334, 170-173]). Results of ADP-ribosylation and/or phosphorylation experiments with either unlabeled or labeled reagents ([14C]NAD and [32P]ATP) strongly suggest that our preparation contained native ADP-ribosylated and native phosphorylated forms which could be estimated at about 20% and 40% of the whole EF-2. Phosphorylated and ADP-ribosylated forms of EF-2 could be ADP-ribosylated and phosphorylated, respectively, but a native form both ADP-ribosylated and phosphorylated was not detected. Our results also suggest the existence of a minor native form of EF-2 and of its phosphorylated and ADP-ribosylated derivatives.  相似文献   

8.
Protein synthesis elongation factor 2 (EF-2) from all archaebacteria so far analysed, is susceptible to inactivation by diphtheria toxin, a property which it shares with EF-2 from the eukaryotic 8OS translation system. To resolve the structural basis of diphtheria toxin susceptibility, the structural gene for the EF-2 from an archaebacterium, Methanococcus vannielii, was cloned and its nucleotide sequence determined. It was found that (i) this gene is closely linked to that coding for elongation factor 1 alpha-(EF-1 alpha), (ii) the size of the gene product, as derived from the nucleotide sequence, lies between those for EF-2 from eukaryotes and eubacteria, (iii) it displays a higher sequence similarity to eukaryotic EF-2 than to eubacterial homologues, and (iv) the histidine residue which is modified to diphthamide and then ADP-ribosylated by diphtheria toxin is present in a sequence context similar to that of eukaryotic EF-2 but it is not conserved in eubacterial EF-G. The EF-2 gene from Methanococcus is expressed in transformed Saccharomyces cerevisiae but is not ADP-ribosylated by diphtheria toxin. This indicates that the Saccharomyces enzyme system is unable to post-translationally convert the respective histidine residue from the Methanococcus EF-2 into diphthamide.  相似文献   

9.
The functional domains of the eukaryotic elongation factor (EF) 1 beta gamma have been delineated with the use of limited proteolysis, protein microsequencing, gel electrophoresis under non-denaturing conditions and antibodies against EF-1 beta and EF-1 gamma. By means of limited proteolysis, it was possible to obtain large fragments of EF-1 beta. In contrast to amino-terminal fragments, those derived from the carboxy-terminal part of EF-1 beta were still active in enhancing the guanine nucleotide exchange of GDP bound to EF-1 alpha. With the same technique of limited proteolysis, it was possible to isolate a trypsin-resistant core from EF-1 beta gamma containing polypeptide chain fragments derived from both subunits. A polyvalent antiserum against EF-1 beta and two monoclonal antibodies against EF-1 gamma were used to identify the protein fragments in this core. The monoclonal antibodies were shown to recognize different epitopes, one localized on the amino-terminal and another on the carboxy-terminal half of EF-1 gamma. The antiserum against EF-1 beta and one of the monoclonal antibodies (mAb 36E5), which recognized the amino-terminal half of EF-1 gamma, reacted with this trypsin-resistant core. We conclude that the amino-terminal halves of both EF-1 beta and EF-1 gamma are firmly attached to each other, and that the carboxy-terminal part of EF-1 beta interacts with EF-1 alpha.  相似文献   

10.
Antibodies prepared in rabbits against Escherichia coli ribosomal proteins L7/L12 are reported to be immunologically cross-reactive with some ribosomal proteins on the 60 S subunit of eukaryote ribosomes (Wool & Stöffler, 1974; Stöffler et al., 1974). We have confirmed these reports and extended this finding to a detailed study of the functional properties of eukaryote ribosomes which are affected by these cross-reacting antibodies. We report here the partial reactions in protein synthesis that are inhibited by the anti-L7/L12 IgG (immunoglobulin G) preparations using a chicken liver system. The following reactions were inhibited: EF-1 (elongation factor 1) dependent binding of aminoacyl-tRNA to ribosomes and GTP hydrolysis; EF-2 dependent binding of nucleotide to ribosomes and GTP hydrolysis; binding of [14C]ADP-ribosyl · EF-2 to ribosomes. This last reaction is more sensitive to the antibody inhibition than the corresponding nucleotide binding reaction. We show that the inhibitions were not simply non-specific precipitation of ribosomes by IgG, in that monovalent Fabs were also inhibitory, and peptidyl transferase activity was not inhibited. The functions inhibited with the IgG preparations in the chicken liver system are analogous to those inhibited in the homologous E. coli system. Thus the cross-reacting protein is functionally as well as immunologically conserved.  相似文献   

11.
To investigate the generality of efficient double-strand break repair and damage-induced mutagenesis in hyperthermophilic archaea, we systematically measured the effects of five DNA-damaging agents on Sulfolobus acidocaldarius and compared the results to those obtained for Escherichia coli under corresponding conditions. The observed lethality of gamma-radiation was very similar for S. acidocaldarius and E. coli, arguing against unusually efficient double-strand break repair in S. acidocaldarius. In addition, DNA-strand-breaking agents (gamma-radiation or bleomycin), as well as DNA-cross-linking agents (mechlorethamine, butadiene diepoxide or cisplatin) stimulated forward mutation, reverse mutation, and formation of recombinants via conjugation in Sulfolobus cells. Although two of the five DNA-damaging agents failed to revert the E. coli auxotrophs under these conditions, all five reverted S. acidocaldarius auxotrophs.  相似文献   

12.
When the homogenate prepared from immature rat testes was incubated with [32P]NAD, several proteins (90, 39 and 20 kDa) were ADP-ribosylated in the absence of bacterial toxins. This observation suggested the existence of an endogenous ADP-ribosyltransferase and substrates. The data that the digested product by phosphodiesterase of ADP-ribosylated 20 kDa protein was 5'-AMP suggested that 20 kDa protein was mono(ADP-ribosyl)ated. In addition, the mono(ADP-ribosyl)ation of 20 kDa protein was enhanced by guanine nucleotides such as GTP, GDP and GTP[gamma S], and decreased by the concentrations of 10 mM Mg2+. In contrast, the incorporation of ADP-ribose moiety from NAD to both 90 and 39 kDa proteins was not changed by guanine nucleotides. On the other hand, mono(ADP-ribosyl)ation of 20 kDa protein was not observed in the homogenate prepared from other tissues of the same rats. Furthermore, we found that mono(ADP-ribosyl)ation of 20 kDa protein was decreased with the maturation of the rats and that an endogenous mono(ADP-ribosyl)transferase and 20 kDa protein were located in the nuclei.  相似文献   

13.
In order to reveal functional properties of recombination involving short ssDNAs in hyperthermophilic archaea, we evaluated oligonucleotide-mediated transformation (OMT) in Sulfolobus acidocaldarius and Escherichia coli as a function of the molecular properties of the ssDNA substrates. Unmodified ssDNAs as short as 20–22 nt yielded recombinants in both organisms, as did longer DNAs forming as few as 2–5 base pairs on one side of the genomic mutation. The two OMT systems showed similar responses to certain end modifications of the oligonucleotides, but E. coli was found to require a 5' phosphate on 5'-limited ssDNA whereas this requirement was not evident in S. acidocaldarius . The ability of both E. coli and S. acidocaldarius to incorporate short, mismatched ssDNAs into their genomes raises questions about the biological significance of this capability, including its phylogenetic distribution among microorganisms and its impact on genome stability. These questions seem particularly relevant for S. acidocaldarius , as this archaeon has natural competence for OMT, encodes no MutSL homologues and thrives under environmental conditions that accelerate DNA decomposition.  相似文献   

14.
The L8 protein complex consisting of L7/L12 and L10 in Escherichia coli ribosomes is assembled on the conserved region of 23 S rRNA termed the GTPase-associated domain. We replaced the L8 complex in E. coli 50 S subunits with the rat counterpart P protein complex consisting of P1, P2, and P0. The L8 complex was removed from the ribosome with 50% ethanol, 10 mM MgCl(2), 0.5 M NH(4)Cl, at 30 degrees C, and the rat P complex bound to the core particle. Binding of the P complex to the core was prevented by addition of RNA fragment covering the GTPase-associated domain of E. coli 23 S rRNA to which rat P complex bound strongly, suggesting a direct role of the RNA domain in this incorporation. The resultant hybrid ribosomes showed eukaryotic translocase elongation factor (EF)-2-dependent, but not prokaryotic EF-G-dependent, GTPase activity comparable with rat 80 S ribosomes. The EF-2-dependent activity was dependent upon the P complex binding and was inhibited by the antibiotic thiostrepton, a ligand for a portion of the GTPase-associated domain of prokaryotic ribosomes. This hybrid system clearly shows significance of binding of the P complex to the GTPase-associated RNA domain for interaction of EF-2 with the ribosome. The results also suggest that E. coli 23 S rRNA participates in the eukaryotic translocase-dependent GTPase activity in the hybrid system.  相似文献   

15.
Escherichia coli K-12 varkappa971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv(+) hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his(+) (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F' factor (FS400) carrying the rfb-his region of S. typhimurium to the same two ilv(+) hybrids gave similar results. LPS extracted from two ilv(+),his(+), factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his(+) hybrids obtained from varkappa971 itself by similar HfrK9 and F'FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli varkappa971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli varkappa971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli varkappa971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his(+) recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Omega8. This suggests that, although the parental E. coli K-12 strain varkappa971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units.  相似文献   

16.
The major substrate for Ca2+/calmodulin-dependent protein kinase III in mammalian cells is a species of Mr 100,000 that has a primarily cytoplasmic localization. This substrate has now been identified as elongation factor-2 (EF-2), a protein that catalyzes the translocation of peptidyl-tRNA on the ribosome. The amino acid sequence of 18 residues from the N-terminal of the Mr 100,000 CaM-dependent protein kinase III substrate purified from rat pancreas was found to be identical to the N-terminal sequence of authentic rat EF-2 as previously deduced from nucleic acid sequencing of a cDNA (Kohno, K., Uchida, T., Ohkubo, H., Nakanishi, S., Nakanishi, T., Fukui, T., Ohtsuka, E., Ikehara, M., and Okada, Y. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 4978-4982). CaM-dependent protein kinase III phosphorylated EF-2 in vitro with a stoichiometry of approximately 1 mol/mol on a threonine residue. Amino acid sequencing of the purified tryptic phosphopeptide revealed that this threonine residue lies within the sequence: Ala-Gly-Glu-Thr-Arg-Phe-Thr-Asp-Thr-Arg (residues 51-60 of EF-2). The Mr 100,000 protein was stoichiometrically ADP-ribosylated in vitro by the addition of diphtheria toxin and NAD. The Mr 100,000 protein was photoaffinity labeled with a GTP analog and the protein had an endogenous GTPase activity that could be stimulated by the addition of salt-washed ribosomes. These properties are all characteristic of EF-2. Dephospho-EF-2 could support poly(U)-directed polyphenylalanine synthesis in a reconstituted elongation system when combined with EF-1. In the same system, phospho-EF-2 was virtually inactive in supporting polypeptide synthesis; this effect could be reversed by dephosphorylation of phospho-EF-2. These results suggest that intracellular Ca2+ inhibits protein synthesis in mammalian cells via CaM-dependent protein kinase III-catalyzed phosphorylation of EF-2.  相似文献   

17.
Messenger RNA for yeast cytosolic polypeptide chain elongation factor 1 alpha (EF-1 alpha) was partially purified from Saccharomyces cerevisiae. Double-stranded complementary DNA (cDNA) was synthesized and cloned in Escherichia coli with pBR327 as a vector. Recombinant plasmid carrying yEF-1 alpha cDNA was identified by cross-hybridization with the E. coli tufB gene and the yeast mitochondrial EF-Tu gene (tufM) under non-stringent conditions. A yeast gene library was then screened with the EF-1 alpha cDNA and several clones containing the chromosomal gene for EF-1 alpha were isolated. Restriction analysis of DNA fragments of these clones as well as the Southern hybridization of yeast genomic DNA with labelled EF-1 alpha cDNA indicated that there are two EF-1 alpha genes in S. cerevisiae. The nucleotide sequence of one of the two EF-1 alpha genes (designated as EF1 alpha A) was established together with its 5'- and 3'-flanking sequences. The sequence contained 1374 nucleotides coding for a protein of 458 amino acids with a calculated mol. wt. of 50 300. The derived amino acid sequence showed homologies of 31% and 32% with yeast mitochondrial EF-Tu and E. coli EF-Tu, respectively.  相似文献   

18.
Nuclear mono- and poly(ADP-ribosyl) protein conjugates formed in living hepatoma AH 7974 cells in response to treatment with the alkylating agent dimethyl sulfate have been studied. They were isolated from the perchloric acid precipitate of freshly prepared nuclei in a relatively pure form and with an overall yield of more than 80%, utilizing aminophenylboronic acid-agarose chromatography. Exposure of the cells to 400 microM dimethyl sulfate led to a transient rise of ADP-ribosylated proteins. After 20 min, the level of endogenous poly(ADP-ribosyl) residues increased by a factor of 21, amounting to a final value of 772 +/- 57 pmol/mg of DNA while the mono(ADP-ribosyl) residues were raised to even higher concentrations (1864 pmol/mg of DNA), corresponding to a 12-fold stimulation as compared to untreated cells. As a result of dimethyl sulfate treatment, the amount of acceptor protein being modified by (ADP-ribose)n was elevated 15-fold, reaching a final proportion of 2.3 +/- 0.4% of total nuclear protein. The increase in (ADP-ribosyl)n-modified proteins was suppressed by benzamide, a potent inhibitor of poly(ADP-ribose) synthetase. More than half of the nuclear mono- and poly(ADP-ribosyl) residues were linked to histone H2B. The modifying residues could be removed from the major acceptor by treatment with 0.1 M NaOH, but not with neutral hydroxylamine. Minor amounts of other histones, especially of histone H4, were possibly also ADP-ribosylated under the stimulating effect of dimethyl sulfate. In addition, several nonhistone proteins with apparent molecular masses of 100-116 and 170 kDa were found to carry substantial amounts of mono- and poly(ADP-ribose).  相似文献   

19.
When protein synthesis is arrested by amino acid starvation, Escherichia coli wild-type strains show stringent control (SC) over stable RNA (sRNA) accumulation as well as a large number of other growth-related processes. One of the events under SC is transport of metabolites. Thus, under amino acid starvation, E. coli fails to accumulate the non-metabolizable glucose analog alpha-methyl-D-glucoside, whereas isogenic relaxed strains continue to take up this glucose analog. Unlike the Bacteria, most wild-type archaeal strains show relaxed control of sRNA accumulation, although a number of stringent strains have been identified. In order to determine whether stringency in the Archaea affects physiological events different from sRNA accumulation, transport of glucose analogs was examined under amino acid starvation in two stringent archaeal strains, Haloferax volcanii and Sulfolobus acidocaldarius. The experiments were performed with 2-deoxy-D-glucose, which was shown to be transported, but metabolized very limitedly. Unlike E. coli, H. volcanii and S. acidocaldarius continued to transport 2-deoxy-D-glucose under amino acid starvation. Thus, in both Archaea glucose analog transport is not under SC, as it is in E. coli.  相似文献   

20.
During growth with low levels of K+, Bacillus acidocaldarius expressed a high-affinity K+ uptake system. The following observations indicate that this system strongly resembles the Kdp-ATPase of Escherichia coli: (i) its high affinity for K+ (Km of 20 microM or below); (ii) its poor transport of Rb+; (iii) the enhanced ATPase activity of membranes derived from cells grown with low levels of K+ (this activity was stimulated by K+ and inhibited by vanadate); (iv) the expression of an extra protein with a molecular weight of 70,000 in cells grown with low levels of K+; and (v) the immunological cross-reactivity of this 70,000-molecular-weight protein with antibodies against the catalytic subunit B of the E. coli Kdp system. Antibodies against the complete E. coli Kdp system, which immunoprecipitated the whole E. coli KdpABC complex, almost exclusively precipitated the 70,000-molecular-weight protein from detergent-solubilized B. acidocaldarius membranes. The possibility that the B. acidocaldarius Kdp system consists of a single, KdpB-type subunit is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号