首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular RNA chaperones are crucial for the genesis of correctly folded functional RNAs. Using several complementary in vitro assays we find that the bunyavirus nucleocapsid protein (N) is an RNA chaperone. In the Bunyaviridae genomic RNA is in stable "panhandle" formation that arises through the hydrogen bonding of the terminal nucleotides of the RNA. The RNA chaperone function of N facilitates panhandle formation even though the termini are separated by >2 kb. RNA panhandle formation is likely driven by the exceptionally high base-pairing specificity of the terminal nucleotides as evidenced by P-num analysis. N protein can nonspecifically dissociate RNA duplexes. In addition, following panhandle formation, the RNA chaperone activity of N also appears to be involved in dissociation of the RNA panhandle and remains in association with the 5' terminus of the viral RNA following dissociation. Thus, N likely functions in the initiation of genome replication to allow efficient initiation of RNA synthesis by the viral polymerase. The RNA chaperone activity of N may be facilitated by an intrinsically disordered domain that catalyzes RNA unfolding driven by reciprocal entropy transfer. These observations highlight the essential features that are probably common to all RNA chaperones in which the role of the chaperone is to nonspecifically dissociate higher order structure and formation of functional higher order structure may often be predicted by RNA P-num value. The data also highlight features of N that are probably specifically important during replication of bunyavirus RNA.  相似文献   

2.
Viral ribonucleocapsids harboring the viral genomic RNA are used as the template for viral mRNA synthesis and replication of the viral genome by viral RNA-dependent RNA polymerase (RdRp). Here we show that hantavirus nucleocapsid protein (N protein) interacts with RdRp in virus-infected cells. We mapped the RdRp binding domain at the N terminus of N protein. Similarly, the N protein binding pocket is located at the C terminus of RdRp. We demonstrate that an N protein-RdRp interaction is required for RdRp function during the course of virus infection in the host cell.  相似文献   

3.
Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein is encoded by the smallest of the three genome segments (S). N protein is the principal structural component of the viral capsid and is central to the hantavirus replication cycle. We examined intermolecular N-protein interaction and RNA binding by using bacterially expressed Sin Nombre virus N protein. N assembles into di- and trimeric forms. The mono- and dimeric forms exist transiently and assemble into a trimeric form. In contrast, the trimer is highly stable and does not efficiently disassemble into the mono- and dimeric forms. The purified N-protein trimer is able to discriminate between viral and nonviral RNA molecules and, interestingly, recognizes and binds with high affinity the panhandle structure composed of the 3' and 5' ends of the genomic RNA. In contrast, the mono- and dimeric forms of N bind RNA to form a complex that is semispecific and salt sensitive. We suggest that trimerization of N protein is a molecular switch to generate a protein complex that can discriminate between viral and nonviral RNA molecules during the early steps of the encapsidation process.  相似文献   

4.
Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein is the principal structural component of the viral capsid. N forms a stable trimer that specifically recognizes the panhandle structure formed by the viral RNA termini. We used trimeric glutathione S-transferase (GST)-N protein and small RNA panhandles to examine the requirements for specific recognition by Sin Nombre hantavirus N. Trimeric GST-N recognizes the panhandles of the three viral RNAs (S, M, and L) with high affinity, whereas the corresponding plus-strand panhandles of the complementary RNA are recognized with lower affinity. Based on analysis of nucleotide substitutions that alter either the higher-order structure of the panhandle or the primary sequence of the panhandle, both secondary structure and primary sequence are necessary for stable interaction with N. A panhandle 23 nucleotides long is necessary and sufficient for high-affinity binding by N, and stoichiometry calculations indicate that a single N trimer interacts with a single panhandle. Surprisingly, displacement of the panhandle structure away from the terminus does not eliminate recognition by N. The binding of N to the panhandle is an entropy-driven process resulting in initial stable N-RNA interaction followed by a conformational change in N. Taken together, these data provide insight into the molecular events that take place during interaction of N with the panhandle and suggest that specific high-affinity interaction between an RNA binding domain of trimeric N and the panhandle is required for encapsidation of the three viral RNAs.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
A key genomic characteristic that helps define Hantavirus as a genus of the family Bunyaviridae is the presence of distinctive terminal complementary nucleotides that promote the folding of the viral genomic segments into "panhandle" hairpin structures. The hantavirus nucleocapsid protein (N protein), which is encoded by the smallest of the three negative-sense genomic RNA segments, undergoes in vivo and in vitro trimerization. Trimeric hantavirus N protein specifically recognizes the panhandle structure formed by complementary base sequence of 5' and 3' ends of viral genomic RNA. N protein trimers from the Andes, Puumala, Prospect Hill, Seoul, and Sin Nombre viruses recognize their individual homologous panhandles as well as other hantavirus panhandles with high affinity. In contrast, these hantavirus N proteins bind with markedly reduced affinity to the panhandles from the genera Bunyavirus, Tospovirus, and Phlebovirus or Nairovirus. Interactions between most hantavirus N and heterologous hantavirus viral RNA panhandles are mediated by the nine terminal conserved nucleotides of the panhandle, whereas Sin Nombre virus N requires the first 23 nucleotides for high-affinity binding. Trimeric hantavirus N complexes undergo a prominent conformational change while interacting with panhandles from members of the genus Hantavirus but not while interacting with panhandles from viruses of other genera of the family Bunyaviridae. These data indicate that high-affinity interactions between trimeric N and hantavirus panhandles are conserved within the genus Hantavirus.  相似文献   

14.
15.
Nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) possesses an RNA-dependent RNA polymerase activity responsible for viral genome RNA replication. Despite several reports on the characterization of this essential viral enzyme, little is known about the reaction pathway of NS5B-catalyzed nucleotide incorporation due to the lack of a kinetic system offering efficient assembly of a catalytically competent polymerase/template/primer/nucleotide quaternary complex. In this report, specific template/primer requirements for efficient RNA synthesis by HCV NS5B were investigated. For intramolecular copy-back RNA synthesis, NS5B utilizes templates with an unstable stem-loop at the 3' terminus which exists as a single-stranded molecule in solution. A template with a stable tetraloop at the 3' terminus failed to support RNA synthesis by HCV NS5B. Based on these observations, a number of single-stranded RNA templates were synthesized and tested along with short RNA primers ranging from two to five nucleotides. It was found that HCV NS5B utilized di- or trinucleotides efficiently to initiate RNA replication. Furthermore, the polymerase, template, and primer assembled initiation-competent complexes at the 3' terminus of the template RNA where the template and primer base paired within the active site cavity of the polymerase. The minimum length of the template is five nucleotides, consistent with a structural model of the NS5B/RNA complex in which a pentanucleotide single-stranded RNA template occupies a groove located along the fingers subdomain of the polymerase. This observation suggests that the initial docking of RNA on NS5B polymerase requires a single-stranded RNA molecule. A unique beta-hairpin loop in the thumb subdomain may play an important role in properly positioning the single-stranded template for initiation of RNA synthesis. Identification of the template/primer requirements will facilitate the mechanistic characterization of HCV NS5B and its inhibitors.  相似文献   

16.
Hepadnavirus replication requires the concerted action of the polymerase and core proteins to ensure packaging of the RNA pregenome and DNA maturation. The arginine-rich C terminus of the core protein plays an essential role in both of these steps while being dispensable for nucleocapsid formation. In an attempt to identify other functional domains of the core protein, we performed a series of trans-complementation experiments analyzing the ability of duck and human hepatitis B virus (DHBV and HBV) core protein subunits to support the replication of a core-defective DHBV genome. Plasmids expressing the N-terminal amino acids 1 to 67 or the remaining C-terminal portion, amino acids 67 to 262, of the DHBV core protein were cotransfected into LMH cells along with a replication-deficient construct coding for the DHBV pregenome and polymerase. Neither the N nor the C terminus alone yielded replication-competent core particles. However, cotransfection of plasmids that separately expressed both regions restored a normal replication pattern. Furthermore, the DHBV C terminus but not the N terminus could be replaced by the corresponding domain of the HBV core protein in this assay. Finally, coexpression of the complete HBV core protein and the N terminus from DHBV resulted in DHBV replication, while the HBV core protein alone was not functional. Taken together, these findings suggest a modular organization of the DHBV core protein in which the C terminus is functionally conserved among different hepadnaviruses.  相似文献   

17.
R Levis  B G Weiss  M Tsiang  H Huang  S Schlesinger 《Cell》1986,44(1):137-145
Defective-interfering (DI) genomes of a virus contain sequence information essential for their replication and packaging. They need not contain any coding information and therefore are a valuable tool for identifying cis-acting, regulatory sequences in a viral genome. To identify these sequences in a DI genome of Sindbis virus, we cloned a cDNA copy of a complete DI genome directly downstream of the promoter for the SP6 bacteriophage DNA dependent RNA polymerase. The cDNA was transcribed into RNA, which was transfected into chicken embryo fibroblasts in the presence of helper Sindbis virus. After one to two passages the DI RNA became the major viral RNA species in infected cells. Data from a series of deletions covering the entire DI genome show that only sequences in the 162 nucleotide region at the 5' terminus and in the 19 nucleotide region at the 3' terminus are specifically required for replication and packaging of these genomes.  相似文献   

18.
Each segment of the influenza A virus (IAV) genome contains conserved sequences at the 5'- and 3'-terminal ends, which form the promoter region necessary for polymerase binding and initiation of RNA synthesis. Although several models of interaction have been proposed it remains unclear if these two short, partially complementary, and highly conserved sequences can form a stable RNA duplex at physiological temperatures. First, our time-resolved FRET analysis revealed that a 14-mer 3'-RNA and a 15-mer 5'-RNA associate in solution, even at 42 °C. We also found that a nonfunctional RNA promoter containing the 3'-G3U mutation, as well as a promoter containing the compensatory 3'-G3U/C8A mutations, was able to form a duplex as efficiently as wild type. Second, UV melting analysis demonstrated that the wild-type and mutant RNA duplexes have similar stabilities in solution. We also observed an increase in thermostability for a looped promoter structure. The absence of differences in the stability and binding kinetics between wild type and a nonfunctional sequence suggests that the IAV promoter can be functionally inactivated without losing the capability to form a stable RNA duplex. Finally, using uridine specific chemical probing combined with mass spectrometry, we confirmed that the 5' and 3' sequences form a duplex which protects both RNAs from chemical modification, consistent with the previously published panhandle structure. These data support that these short, conserved promoter sequences form a stable complex at physiological temperatures, and this complex likely is important for polymerase recognition and viral replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号