首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
125I-labeled human epidermal growth factor (hEGF) binds in a specific and saturable manner to human fibroblasts. At 37 degrees C, the cell- bound 125I-hEGF initially may be recovered in a native form by acid extraction; upon subsequent incubation, the cell-bound 125I-hEGF is degraded very rapidly, with the appearance in the medium of 125I- monoiodotyrosine. At 0 degrees C, cell-bound 125I-hEGF is not degraded but slowly dissociates from the cell. The data are consistent with a mechanism in which 125I-hEGF initially is bound to the cell surface and subsequently is internlized before degradation. The degradation is blocked by inhibitors of metabolic energy production (azide, cyanide, dinitrophenol), some protease inhibitors (Tos-Lys-CH2Cl, benzyl guanidobenzoate), a lysosomotropic agent (chloroquine) various local anesthetics (cocaine, lidocaine, procaine), and ammonium chloride. After the binding and degradation of 125I-hEGF the fibroblasts are no longer able to rebind fresh hormone. The binding capacity of these cells is restored by incubation in a serum-containing medium; this restoration is inhibited by cycloheximide or actinomycin D.  相似文献   

2.
The fate in culture of the T cell growth factor (TCGF), which is required for continued growth of human cultured T cells (CTC) in vitro, was studied. TCGF activity was stable for 7 days at 37 degrees C. However, it was no longer detectable after incubation with actively growing CTC at 37 degrees C for 3 days. This loss of TCGF activity also occurred quite rapidly and was detectable within 1 hr of incubation of 0.3 ml supernatant with 2 to 5 x 10(7) CTC at 23 degrees C. 2 x 10(8) mononuclear peripheral blood leukocytes were not effective in removing TCGF activity, and incubation with similar numbers of cells from B and T cell lines had no effect. Three-day-old concanavalin A and phytohemagglutinin blasts were very reactive with TCGF, so that 10(7) or 2 x 10(7) cells consistently removed TCGF activity. These experiments suggested specific absorption of TCGF by activated T cells, and led us to develop a model of ligand-activated TCGF-induced proliferation of T cells: Ligands induce production of TCGF by T-producer cells and deliver a first signal to the T-responder cells. This causes a receptor for TCGF to appear on T-responder cells. Only then does TCGF deliver the obligatory second signal that is needed to drive the T-responder cells into proliferation.  相似文献   

3.
The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells (KD of 42.0 +/- 3.8 pM and 70,526 +/- 6121 binding sites/cell for the high-affinity sites, KD of 0.933 +/- 0.27 nM and 630,252 +/- 172,459 sites/cell for low-affinity binding sites). The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely 125I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound 125I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At 37 degrees C, 30% of the cell-associated 125I-bFGF became resistant to the acidic wash after 90 min, suggesting that this fraction of bound 125I-bFGF was internalized. At this temperature, degradation of the internalized ligand was followed after 1 h by the appearance of three major bands of 15,000, 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.  相似文献   

4.
The role of intracellular processing of epidermal growth factor (EGF) in the induction of proliferation of quiescent Swiss 3T3 cells was studied using various inhibitors. The number of amines (dansylcadaverine, chloroquine, cystamine, 5-methoxytryptamine) dimethylurea and monensin were shown to block the mitogenic effect of EGF. The majority of these substances while used in concentrations sufficient to inhibit the proliferation do not significantly influence 125I-EGF binding and internalization. The level of EGF degradation was reduced only by chloroquine. The inhibitory effect of amines and monensin on the generation of proliferative signal was supposed to take place at the stages of EGF processing in "specialized" endosomes and in Golgi apparatus.  相似文献   

5.
The proliferation and differentiation of hemopoietic committed progenitor cells depend on colony stimulating factors (CSF). However, isolated mouse granulocyte-macrophage progenitor cells can still undergo limited proliferation in serum-free cultures after CSF deprivation. To test whether this is due to an accumulated pool of internalized factor, we examined the binding, internalization and degradation of radiolabelled interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) in various hemopoietic cells. We found 20,000 high affinity IL-3 receptors on cells of two IL-3-dependent hemopoietic cell lines, FDC-P1 and FDC-P2 (Kd = 85 and 129 pM). FDC-P1 cells, which also respond to GM-CSF, possess 600 high-affinity GM-CSF receptors (Kd = 64 pM). Cells of both lines internalize IL-3, but only FDC-P1 cells release degraded IL-3 at a rapid rate. Both cell lines have similar dose-response curves for IL-3 and survival kinetics after factor removal. All other cells tested behave like FDC-P1, suggesting that the metabolism of IL-3 by FDC-P2 is exceptional. Our study indicates that transient proliferation of committed progenitor cells in the absence of added factors is apparently not due to a stable pool of internalized CSF but merely represents an intrinsic capability of these cells.  相似文献   

6.
Epidermal Growth Factor (EGF), a small polypeptide which acts as a mitogen for many cell types, has previously been shown to bind to a specific plasma membrane receptor on 3T3 cells. If 125I-EGF is bound to 3T3 cells for one hour at 4°C, it remains predominantly associated with the plasma membrane-containing fractions obtained by subjecting cell supernatants to equilibrium sedimentation on sucrose gradients. When binding is followed by a 10-minute incubation at 37°C, over 50% of the 125I-EGF is associated with two internal membrane-containing peaks having higher densities than the plasma membrane. After one hour at 37°C, over 80% of the 125I-EGF is degraded and removed from the cells. The most rapidly labeled internal peak corresponds in density to brain-coated vesicles (CVs). Antiserum prepared against coated vehicles from brain precipitates the 125I-EGF in this peak. In addition, CVs containing 125I-EGF can be co-purified from 3T3 cells exposed to 125I-EGF, using brain as a carrier. Several lines of evidence suggest that the other 125I-EGF-labeled intracellular peak is 125I-EGF in lysosomes. These results provide kinetic and biochemical evidence for a unidirectional pathway for EGF catabolism by 3T3 cells. EGF first binds to the plasma membrane bound receptors, is then moved to the cytoplasm in CVs, and finally appears in lysosomes, where it is degraded and released from the cells. Ten-millimolar NH4Cl blocks lysosomal hydrolysis of EGF almost completely. Subsequently, EGF internalization is inhibited. This finding suggests that the pathway for EGF internalization and degradation is tightly coupled.  相似文献   

7.
Regulation of cell proliferation by epidermal growth factor   总被引:27,自引:0,他引:27  
Epidermal Growth Factor (EGF) is a 6045 dalton polypeptide which stimulates the proliferation of various cell types in vitro and in vivo. EGF binds to diffusely distributed membrane receptors which rapidly cluster primarily on coated pits areas on the plasma membrane. Subsequently, the EGF-receptor complexes are endocytosed and degraded by lysosomal enzymes. The lateral diffusion coefficient (D) of EGF-receptor complexes on cultured cells increases gradually from D = 2.8 X 10(-10) cm2/sec at 5 degrees C to 8.5 X 10(-10) cm2/sec at 37 degrees C. In the same range of temperature the rotational correlation times change from 25 to 50 microseconds to approximately 350 microseconds. Hence, at 4 degrees C, the occupied EGF receptors translate and rotate rapidly in the plane of the membrane. At 37 degrees C, EGF receptors form microclusters composed of 10 to 50 molecules. Moreover, it is concluded that both at 4 degrees C and 37 degrees C lateral diffusion of the occupied receptors is not the rate determining step for either receptor clustering or internalization. EGF receptor is a 150,000 to 170,000 dalton glycoprotein. The receptor is in close proximity to an EGF-sensitive, cAMP-independent, tyrosine-specific protein kinase which also phosphorylates the receptor molecules itself. The EGF sensitive kinase is similar to the kinase activity which is associated with certain RNA tumor viruses. The fact that the non-mitogenic cyanogen-bromide cleaved EGF is as potent as native EGF in stimulating phosphorylation suggests that EGF-induced, protein phosphorylation is a necessary but insufficient signal for the induction of DNA synthesis by EGF. EGF receptor serves also as the binding site for Transforming Growth Factors (TGF) which compete with EGF and induce anchorage-independent growth of normal cells in soft agar. Tumor promoters such as phorbol ester effect the binding of EGF to its membrane receptors and its ability to stimulate DNA synthesis. EGF itself has also some tumor promoting activity. Hence, the membrane receptor for EGF seems to participate in the regulation of normal and neoplastic growth. Monoclonal antibodies against EGF receptor (IgM) induce various early and delayed effects of EGF, while their monovalent Fab' fragments are devoid of biological activity. These observations support the notions that EGF receptor rather than EGF itself is the active moiety and that the role of the hormone is to perturb the receptor in the appropriate way, probably by inducing the microaggregation of EGF receptors.  相似文献   

8.
Addition of serum to quiescent cultures of 3T3 cells rapidly increases lactic acid formation and subsequently stimulates cell division. The stimulation of lactic acid production is seen at high, saturating concentrations of extra-cellular glucose. It is dependent on the time of exposure and on the dose of serum and is not blocked by the addition of cycloheximide, puromycin, or actinomycin D. In contrast, serum only marginally affects glycolysis by rapidly growing 3T6 or SV40-3T3 cells. In addition to serum, epidermal growth factor (0.1 to 10 ng/ml) and insulin (10 to 500 ng/ml) cause a striking stimulation of glycolysis in quiescent 3T3 cells. Neither exogenous cyclic nucleotides nor ouabain effect the glycolytic response, but the presence of Ca2+ markedly influences the activation of glycolysis by epidermal growth factor and by insulin. A novel finding in this study is that homogenates prepared from quiescent cells treated with serum, epidermal growth factor, or insulin show increased glycolysis as compared with homogenates from nonstimulated cultures. This finding will allow further experimental analysis of the cause of increased glycolysis in rapidly proliferating cells.  相似文献   

9.
Iodinated colony-stimulating factor produced by L-cells (125I-CSF-1) binds specifically to murine peritoneal exudate macrophages. At 37°C, the cell-bound 125I-CSF-1 was internalized and degraded very rapidly, with the appearance of radioactive iodotyrosine in the medium. At 0°C, the cell-bound 125I-CSF-1 was not internalized and degraded, nor did it dissociate from the membrane. The internalization and degradation at 37°C could be blocked or reduced by the presence of phenylglyoxal, methylamine and NH4Cl. The chemical nature of the CSF-1 binding site is polypeptide as judged by its sensitivity to trypsin treatment. After the binding and degradation of unlabeled CSF-1, the exudate cells were no longer able to rebind freshly added 125I-CSF-1, indicating the removal of CSF-1 binding site. The binding capacity of these cells, however, could be restored by prolonged incubation at 37°C but not at 0°C in culture medium containing fetal calf serum.  相似文献   

10.
Comparative studies were made of the metabolism of plasma high density lipoprotein (HDL) and low density lipoprotein (LDL) by cultured normal human fibroblasts. On a molar basis, the surface binding of (125)I-HDL was only slightly less than that of (125)I-LDL, whereas the rates of internalization and degradation of (125)I-HDL were very low relative to those of (125)I-LDL. The relationships of internalization and degradation to binding suggested the presence of a saturable uptake mechanism for LDL functionally related to high-affinity binding. This was confirmed by the finding that the total uptake of (125)I-LDL (internalized plus degraded) at 5 micro g LDL protein/ml was 100-fold greater than that attributable to fluid or bulk pinocytosis, quantified with [(14)C]sucrose, and 10-fold greater than that attributable to the sum of fluid endocytosis and adsorptive endocytosis. In contrast, (125)I-HDL uptake could be almost completely accounted for by the uptake of medium during pinocytosis and by invagination of surface membrane (bearing bound lipoprotein) during pinocytosis. These findings imply that, at most, only a small fraction of bound HDL binds to the high-affinity LDL receptor and/or that HDL binding there is internalized very slowly. The rate of (125)I-HDL degradation by cultured fibroblasts (per unit cell mass) exceeded an estimate of the turnover rate of HDL in vivo, suggesting that peripheral tissues may contribute to HDL catabolism. In accordance with their differing rates of uptake and cholesterol content, LDL increased the cholesterol content of fibroblasts and selectively inhibited sterol biosynthesis, whereas HDL had neither effect.  相似文献   

11.
Iodinated colony-stimulating factor produced by L-cells (125I-CSF-1) binds specifically to murine peritoneal exudate macrophages. At 37 degrees C, the cell-bound 125I-CSF-1 was internalized and degraded very rapidly, with the appearance of radioactive iodotyrosine in the medium. At 0 degree C, the cell-bound 125I-CSF-1 was not internalized and degraded, nor did it dissociate from the membrane. The internalization and degradation at 37 degrees C could be blocked or reduced by the presence of phenylglyoxal, methylamine and NH4Cl. The chemical nature of the CSF-1 binding site is polypeptide as judged by its sensitivity to trypsin treatment. After the binding and degradation of unlabeled CSF-1, the exudate cells were no longer able to rebind freshly added 125I-CSF-1, indicating the removal of CSF-1 binding site. The binding capacity of these cells, however, could be restored by prolonged incubation at 37 degrees C but not at 0 degrees C in culture medium containing fetal calf serum.  相似文献   

12.
Vasculotropin/vascular endothelial cell growth factor (VAS/VEGF) is a newly purified growth factor with a unique specificity for vascular endothelial cells. We have investigated the interactions of VAS/VEGF with human umbilical vein endothelial cells (HUVE cells). 125I-VAS/VEGF was bound to HUVE cells in a saturable manner with a half-maximum binding at 2.8 ng/ml. Scatchard analysis did show two classes of high-affinity binding sites. The first class displayed a dissociation constant of 9 pM with 500 sites/cell. The dissociation constant and the number of binding sites of the second binding class were variable for different HUVE cell cultures (KD = 179 ± 101 pM, 5,850 ± 2,950 sites/cell). Half-maximal inhibition of 125I-VAS/VEGF occurred with a threefold excess of unlabeled ligand. Basic fibroblast growth factor (bFGF) and heparin did not compete with 125I-VAS/VEGF binding. In contrast, suramin and protamin sulfate completely displaced 125I-VAS/VEGF binding from HUVE cells. VAS/VEGF was shown to be internalized in HUVE cells. Maximum internalization (55% of total cell-associated radioactivity) was observed after 30 min. 125I-VAS/VEGF was completely degraded 2–3 hr after binding. At 3 hr, the trichloroacetic acid (TCA)-soluble radioactivity accumulated in the medium was 60% of the total radioactivity released by HUVE cells. No degradation fragment of 125I-VAS/VEGF was observed. Chloroquine completely inhibited degradation. VAS/VEGF was able to induce angiogenesis in vitro in HUVE cells. However, it did not significantly modulate urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor (PAI-1), and tissue factor (TF). Prostacyclin production was only stimulated at very high VAS/VEGF concentrations. Taken together, these results indicate that VAS/VEGF might be a potent inducer of neovascularization resulting from a direct interaction with endothelial cells. The angiogenic activity seems to be independent of the plasminogen activator or inhibitor system.  相似文献   

13.
The rat PC12 pheochromocytoma cell line exhibits biological responses to both nerve growth factor (NGF) and epidermal growth factor (EGF). The existence of receptors and biological responses on a common cell for these two well-characterized polypeptide growth factors makes this an attractive system for comparison of ligand binding and processing. Both NGF and EGF are bound to PC12 cells in a competable form at 4 degrees C. At 37 degrees C both ligands are "sequestered," but at different rates and to different extents. While sequestration happens rapidly and nearly quantitatively for bound EGF, the dissociation reaction appears to compete favorably with NGF sequestration. Both EGF and NGF are degraded by PC12 cells. Sequestered EGF, however, is degraded to a greater extent than sequestered NGF.  相似文献   

14.
Incubation of Swiss mouse 3T3 cells at 37 degrees C with bovine brain-derived growth factor (BDGF) decrease the cell surface 125I-EGF binding activity of these cells by 70-80%. This down-modulation of the EGF receptor by BDGF was time, temperature, and dose dependent. Scatchard plot analysis indicated that BDGF binding led to a selective decrease in the number of high-affinity EGF receptors. The BDGF-induced down-modulation of the EGF receptor was completely blocked by protamine, a potent inhibitor of receptor binding and mitogenic activities of BDGF. BDGF down-modulated the EGF receptor in phorbol myristic acetate (PMA)-pretreated cells, as well as in control cells. Furthermore, PMA-pretreated cells responded mitogenically to BDGF, whereas PMA itself failed to stimulate the mitogenic response of PMA-pretreated cells. This BDGF-induced down-modulation of the EGF receptor in PMA-desensitized cells suggests that BDGF down-regulates the EGF receptor by a mechanism distinct from that of PMA. Incubation of cells with compounds which are known to inhibit pinocytosis blocked the down-modulation induced either by BDGF or by platelet-derived growth factor (PDGF) but had no effect on the PMA-induced down-modulation. Incubation of cells with inhibitors of receptor recycling enhanced the BDGF-induced down-modulation of the EGF receptor. These results suggest that BDGF and PDGF induce down-modulation of the EGF receptor by increasing the internalization of cell surface high-affinity receptors and that the internalization process may not be required for down-modulation induced by PMA.  相似文献   

15.
To identify functional relationships between oncogenes and growth factors, we compared the effects of transfected myc and ras oncogenes on the responsiveness of Fischer rat 3T3 cells to three growth factors: epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF-beta). Control cells did not grow in soft agar under any conditions. ras-Transfected cells grew in soft agar under all conditions tested and were insensitive to the stimulatory effects of exogenous growth factors. These cells secreted elevated levels of both EGF-like factors and TGF-beta, suggesting that the lack of responsiveness of these cells to exogenous growth factors arose from autocrine stimulation. myc-Transfected cells displayed conditional anchorage-independent growth: they formed numerous colonies in soft agar in the presence of EGF but relatively few colonies in the presence of PDGF or TGF-beta. Secretion of EGF-like factors and TGF-beta by these cells was not elevated above that of control cells. These results suggest a model for the mechanism of cooperation between myc and ras oncogenes in which ras-like genes induce growth factor production, while myc-like genes increase the responsiveness of cells to these factors.  相似文献   

16.
Human platelet ionophore release-products (IRP) inhibit the binding of 125I-labelled epidermal growth factor (125I-EGF) to its receptors on Swiss 3T3 cells. The inhibition appears to be caused by platelet-derived growth factor (PDGF) in the IRP and results from a decrease in the apparent affinity of cellular receptors for 125I-EGF. However, our results indicate that PDGF does not bind directly to EGF receptors, since (1) PDGF does not down-regulate EGF receptors; (2) the PDGF-mediated inhibition of 125I-EGF binding is temperature-dependent; (3) cells which possess EGF receptors but lack PDGF receptors do not exhibit a PDGF-mediated inhibition of 125I-EGF binding.  相似文献   

17.
Human, rat and mouse epidermal growth factors (EGF) bind to the same receptor on human placenta, but the binding characteristics differ. The apparent affinity constant (KA) for human EGF is higher (15 X 10(9) l/mol) than KA for rat EGF (10 X 10(9) l/mol). Mouse EGF binds with the lowest KA (5 X 10(9) l/mol). The pH optimum differs so that human and rat EGF bind with a pH optimum of 8.0, whereas mouse EGF binds with an optimum of pH 7.4. Half maximal dissociation is 130, 50 and 25 min for human, rat and mouse EGF, respectively. The structures of human, rat and mouse EGF differ somewhat. At least 11 of the first 24 residues differ. The N-terminal sequence of rat EGF is: Ala/Ser-Gly-X-Pro-Pro-Ser-Tyr-Asp-Gly-Tyr-X-Lys-Asp-Gly-Gly-Val-X-Met-Ty r-Val -Glu.  相似文献   

18.
The effects of epidermal growth factor (EGF) were studied in rat pituitary tumor cells, GH3, grown in serum-supplemented and serum-free chemically defined media. EGF (1 nM) increased the cell number to 132% of the control cultured in the defined medium during a 6-day incubation period, while it decreased the cell number to 60% of the control in the serum-supplemented medium. EGF altered the morphology of the cells grown in the defined medium more markedly to an elongated conformation than that of cells grown in the serum-supplemented medium. EGF also stimulated prolactin (PRL) production by culture in the presence or absence of serum. The effects of the cell density of GH3 on the action of EGF were shown to appear in two ways. The mitogenic influence of EGF was more effective on, and more responsive to, high-density cells, whereas the stimulatory action on PRL production was less effective on high-density cells. However, the inhibitory effects on cellular growth appeared independently of cell densities. The results obtained with 125I-EGF binding experiments indicated that the number of binding sites, affinity, and internalization of EGF receptors were similar in either serum-supplemented or serum-free culture. At low cell density, the number of available 125I-EGF binding sites per cell was larger than at high cell density. These results suggested that there was no apparent correlation between EGF binding and its differing effects on the growth of GH3 cultured in the serum-supplemented and the defined medium.  相似文献   

19.
Computerized image-intensified fluorescence microscopy has been used to quantify routing and subcellular concentrations of rhodaminated EGF (Rh-EGF) during its receptor-mediated endocytosis in two transfected NIH-3T3 cell lines expressing 2 X 10(5) and 1.5 X 10(6) receptors per cell, respectively. A series of images were digitized by focusing at different depths through the volume of a single cell. The digitized pictures were corrected for fluorescence photobleaching, and removal of out-of-focus fluorescence contributions by deconvolution using the point spread function of the microscope optics (Agard, D. A., and J. W. Sedat. 1980. Proc. Soc. Photo-Opt. Instr. Eng. 264:110-117) allowed automatic computer analysis of the time dependence of endosomal vesicle size and fluorescence intensity in a live cell and also enabled the study of isolated vesicles. An increase in the amount of fluorescence bound to the cell surface, either by increasing the number of receptors expressed per cell or the concentration of Rh-EGF in the incubation drop, yielded an increase in the total fluorescence of internalized vesicles without an increase in their number and area. The linear relation between fluorescence intensity and area for vesicles at different times indicates that EGF concentration is conserved. This is compatible with fusion of small vesicles to form larger ones. However, as endocytosis proceeds, a twofold increase in the slope of the fluorescence vs. area plots is observed for larger vesicles, suggesting that active sorting causes the EGF to be concentrated. Alternatively, this factor could be produced by cumulative fluorescence contributions from stacked membranes. Since coated pits are internalized independent of their occupancy with EGF receptor, we propose that endocytosis does not involve a mechanism specifically recognizing occupied receptor but is rather triggered by a global intracellular event.  相似文献   

20.
Effect of 3T3 plasma membranes on cells exposed to epidermal growth factor   总被引:3,自引:0,他引:3  
Epidermal growth factor (EGF) induced DNA synthesis in non-confluent, G0-arrested Swiss 3T3 fibroblasts is partially blocked by plasma membranes isolated from the EGF receptor deficient NR-6 Swiss 3T3 cell line. This inhibition could be due to either a steric block of the receptor by the membranes, a membrane induced down regulation of the EGF receptor, or a signal generated by membrane binding which is antagonistic towards the mitogenic signal generated by EGF. Binding measurements utilizing 125I-labeled EGF demonstrated that membranes do not block either the EGF induced down regulation of the receptor or alter the number of receptors on the surface. These results suggest that the membranes exert their inhibitory effect via generation of a signal which is antagonistic to the EGF induced mitogenic signal, with the result expressed as a reduced mitogenic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号