首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. ‘Francesco’ was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp.  相似文献   

2.
We have previously reported the purification and preliminary X-ray characterization of a hemagglutinin from the seeds of Jatropha curcas and, with the detailed sequencing information available now, we find that it is similar to a 2S albumin allergen isolated from the same source. Through a search of Jatropha genome database (http://www.kazusa.or.jp/jatropha/), we map it to the sequence id JcCA0234191 (now referred to as Jcr4S00619.70 in the new version, release 4.5) which has a conserved alpha amylase inhibitor/seed storage protein domain found in the 2S albumin allergens. The putative sequence of the small and large chains of the protein is assigned and the total mass of the two subunits matches with the intact mass 10?kDa determined through MALDI. The protein retains hemagglutination activity between pH 6–9 and up to 60?°C on heat treatment and its hemagglutination activity is inhibited by sialic acid and fetuin. Bioinformatics studies show that the isolated protein sequence clusters in close association with a 2S albumin from Ricinus communis in phylogeny analysis and has a conservation of the characteristic four disulfide linkage pattern. Hemagglutinins and lectins are known to have allergenic effects through their interaction with immunoglobulin E and histamine release and earlier studies have shown that this interaction can be inhibited by lectin-specific sugars. We hope this report bridges the plant allergens and hemagglutinins further for exploring possible mediation of allergenic activity through sialic acid and complex sugar interactions and generates further interest in the area.  相似文献   

3.
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/.  相似文献   

4.
Despite the collection and availability of abundant tomato genome sequences, PCR-based markers adapted to large scale analysis have not been developed in tomato species. Therefore, using public genome sequence data in tomato, we developed three types of DNA markers: expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers (TES markers), genome-derived SSR markers (TGS markers) and EST-derived intronic polymorphism markers (TEI markers). A total of 2,047 TES, 3,510 TGS and 674 TEI markers were established and used in the polymorphic analysis of a cultivated tomato (Solanum lycopersicum) ‘LA925’ and its wild relative Solanum pennellii ‘LA716’, parents of the Tomato-EXPEN 2000 mapping population. The polymorphic ratios between parents revealed by the TES, TGS and TEI markers were 37.3, 22.6 and 80.0%, respectively. Those showing polymorphisms were used to genotype the Tomato-EXPEN 2000 mapping population, and a high-density genetic linkage map composed of 1,433 new and 683 existing marker loci was constructed on 12 chromosomes, covering 1,503.1 cM. In the present map, 48% of the mapped TGS loci were located within heterochromatic regions, while 18 and 21% of TES and TEI loci, respectively, were located in heterochromatin. The large number of SSR and SNP markers developed in this study provide easily handling genomic tools for molecular breeding in tomato. Information on the DNA markers developed in this study is available at http://www.kazusa.or.jp/tomato/.  相似文献   

5.
6.
The two-component systems (TCS), or histidine-to-aspartate phosphorelays, are evolutionarily conserved common signal transduction mechanisms that are implicated in a wide variety of cellular responses to environmental stimuli in both prokaryotes and eukaryotes including plants. Among higher plants, legumes including Lotus japonicus have a unique ability to engage in beneficial symbiosis with nitrogen-fixing bacteria. We previously presented a genome-wide compiled list of TCS-associated components of Mesorhizobium loti, which is a symbiont specific to L. japonicus (Hagiwara et al. 2004, DNA Res., 11, 57–65). To gain both general and specific insights into TCS of this currently attractive model legume, here we compiled TCS-associated components as many as possible from a genome-wide viewpoint by taking advantage that the efforts of whole genome sequencing of L. japonicus are almost at final stage. In the current database (http://www.kazusa.or.jp/lotus/index.html), it was found that L. japonicus has, at least, 14 genes each encoding a histidine kinase, 7 histidine-containing phosphotransmitter-related genes, 7 type-A response regulator (RR)-related genes, 11 type-B RR-related genes, and also 5 circadian clock-associated pseudo-RR genes. These results suggested that most of the L. japonicus TCS-associated genes have already been uncovered in this genome-wide analysis, if not all. Here, characteristics of these TCS-associated components of L. japonicus were inspected, one by one, in comparison with those of Arabidopsis thaliana. In addition, some critical experiments were also done to gain further insights into the functions of L. japonicus TCS-associated genes with special reference to cytokinin-mediated signal transduction and circadian clock.  相似文献   

7.
We have constructed a physical map of Arabidopsis thaliana chromosome3 by ordering the clones from CIC YAC, P1, TAC and BAC librariesusing the sequences of a variety of genetic and EST markersand terminal sequences of clones. The markers used were 112DNA markers, 145 YAC end sequences, and 156 end sequences ofP1, TAC and BAC clones. The entire genome of chromosome 3, exceptfor the centromeric and telomeric regions, was covered by twolarge contigs, 13.6 Mb and 9.2 Mb long. This physical map willfacilitate map-based cloning experiments as well as genome sequencingof chromosome 3. The map and end sequence information are availableon the KAOS (Kazusa Arabidopsis data Opening Site) web siteat http://www.kazusa.or.jp/arabi/.  相似文献   

8.
Complete structure of the chloroplast genome of Arabidopsis thaliana.   总被引:7,自引:0,他引:7  
The complete nucleotide sequence of the chloroplast genome of Arabidopsis thaliana has been determined. The genome as a circular DNA composed of 154,478 bp containing a pair of inverted repeats of 26,264 bp, which are separated by small and large single copy regions of 17,780 bp and 84,170 bp, respectively. A total of 87 potential protein-coding genes including 8 genes duplicated in the inverted repeat regions, 4 ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acid species were assigned to the genome on the basis of similarity to the chloroplast genes previously reported for other species. The translated amino acid sequences from respective potential protein-coding genes showed 63.9% to 100% sequence similarity to those of the corresponding genes in the chloroplast genome of Nicotiana tabacum, indicating the occurrence of significant diversity in the chloroplast genes between two dicot plants. The sequence data and gene information are available on the World Wide Web database KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/arabi/.  相似文献   

9.
We determined the nucleotide sequences of 64 TAC (transformation-competent artificial chromosome) clones selected from genomic libraries of Lotus japonicus accession Miyakojima MG-20 based on the sequence information of expressed sequence tags (ESTs), cDNAs, genes and DNA markers from L. japonicus and other legumes. The length of the DNA regions sequenced in this study was 6,370,255 bp, and the total length of the L. japonicus genome sequenced so far is 32,537,698 bp together with the nucleotide sequences of 256 TAC clones previously reported. Five hundred forty-eight potential protein-encoding genes with known or predicted functions, 127 gene segments and 224 pseudogenes were assigned to the newly sequenced regions by computer prediction and similarity searches against the sequences in protein and EST databases. Based on the nucleotide sequences of the clones, simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers were generated, and each clone was genetically localized onto the linkage map of two accessions of L. japonicus, MG-20 and Gifu B-129. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

10.
The genotype data of 7054 single nucleotide polymorphism (SNP) loci in 40 tomato lines, including inbred lines, F1 hybrids, and wild relatives, were collected using Illumina''s Infinium and GoldenGate assay platforms, the latter of which was utilized in our previous study. The dendrogram based on the genotype data corresponded well to the breeding types of tomato and wild relatives. The SNPs were classified into six categories according to their positions in the genes predicted on the tomato genome sequence. The genes with SNPs were annotated by homology searches against the nucleotide and protein databases, as well as by domain searches, and they were classified into the functional categories defined by the NCBI''s eukaryotic orthologous groups (KOG). To infer the SNPs'' effects on the gene functions, the three-dimensional structures of the 843 proteins that were encoded by the genes with SNPs causing missense mutations were constructed by homology modelling, and 200 of these proteins were considered to carry non-synonymous amino acid substitutions in the predicted functional sites. The SNP information obtained in this study is available at the Kazusa Tomato Genomics Database (http://plant1.kazusa.or.jp/tomato/).  相似文献   

11.
A fine physical map of Arabidopsis thaliana chromosome 5 wasconstructed by ordering the clones from YAC, P1, TAC and BAClibraries of the genome using the sequences of a variety ofgenetic and EST markers and terminal sequences of clones. Themarkers used were 88 genetic markers, 13 EST markers, 87 YACend probes, 100 YAC subclone end probes, and 390 end probesof P1, TAC and BAC clones. The entire genome of chromosome 5,except for the centromeric and telomeric regions, was coveredby two large contigs 11.6 Mb and 14.2 Mb long separated by thecentromeric region. The minimum tiling path of the chromosomewas constituted by a total of 430 P1, TAC and BAC clones. Themap information is available at the Web site http://www.kazusa.or.jp/arabi/.  相似文献   

12.
Jatropha curcas (jatropha) is a multipurpose plant with potential as a raw material for biofuel. In the present study, a total of 43,349 expressed sequence tags (ESTs) from J. curcas were searched for type and frequency of simple sequence repeat (SSR) markers. Five thousand one hundred and seventy-five sequences were indentified to contain 6,108 SSRs with 90.8% simple and 9.2% compound repeat motifs. One hundred and sixty-three EST-SSRs were developed and used to evaluate the transferability and genetic relatedness among 4 accessions of J. curcas from China, Mexico, Thailand and Vietnam; 5 accessions of congeneric species, viz. J. gossypiifolia, dwarf J. integerrima, normal J. integerrima, J. multifida, J. podagrica; and Ricinus communis. The polymorphic markers showed 75.56–85.19% transferability among four species of Jatropha and 26.67% transferability across genera in Ricinus communis. Investigation of genetic relatedness showed that J. curcas and J. integerrima are closely related. EST-SSRs used in this study demonstrate a high efficiency of cross species/genera amplification and are useful for identifying genetic diversity of jatropha and its close taxa and to choose the desired related species for wide crossing to improve new varieties of jatropha. The markers can also be further exploited for genetic resource management and genetic improvement of related species/genera through marker-assisted breeding programs.  相似文献   

13.
We have been developing a HUGE database to summarize results from the sequence analysis of human novel large (>4 kb) cDNAs identified in the Kazusa cDNA sequencing project, systematically designated KIAA plus a four-digit number. HUGE currently contains nearly 2000 gene/protein characteristic tables harboring the results of the computer-assisted analysis of the cDNA and the predicted protein sequences together with those of expression profiling and chromosomal mapping. In the updated version of HUGE, we made it possible to compare each KIAA cDNA sequence with the corresponding entry in the human draft genome sequence that was published recently. Approximately 90% of KIAA cDNAs in HUGE can be localized along the human genome for at least half or more of the cDNA’s length. Any nucleotide differences between the cDNA and the corresponding genomic sequences are also presented in detail. This new version of HUGE greatly helps us evaluate the completeness of cDNA clones and the accuracy of cDNA/genomic sequences. More interestingly, in some cases, the ability to compare cDNA with genomic sequences allows us to identify candidate sites of RNA editing. HUGE is available on the World Wide Web at http://www.kazusa.or.jp/huge.  相似文献   

14.
A fine physical map of the top arm of Arabidopsis thaliana chromosome 3 has been constructed by ordering P1, TAC and BAC clones using the sequences of a variety of DNA markers and end-sequences of clones. The marker sequences used in this study were derived from 58 DNA markers, 93 YAC end-sequences, and 807 end-sequences of P1, TAC and BAC clones. The entire top arm of chromosome 3, except for the centromeric and telomeric regions, was covered by a single contig 13.3 Mb long. This fine physical map will facilitate gene isolation by map-based cloning experiments as well as genome sequencing of the top arm of chromosome 3. The map and end-sequence information are available on the web site KAOS (Kazusa Arabidopsis data Opening Site) at [http://www.kazusa.or.jp/arabi/].  相似文献   

15.
Using the sequence information of expressed sequences tags (ESTs), cDNAs and genes from Lotus japonicus and other legumes, 73 TAC (transformation-competent artificial chromosomes) clones were selected from a genomic library of L. japonicus accession MG-20, and their nucleotide sequences were determined. The length of the DNA sequenced in this study was 7,455,959 bp, and the total length of the DNA regions sequenced so far is 26,167,443 bp together with the nucleotide sequences of 183 TAC clones previously reported. By similarity searches against the sequences in protein and EST databases and prediction by computer programs, a total of 699 potential protein-encoding genes with known or predicted functions, 163 gene segments and 267 pseudogenes were assigned to the newly sequenced regions. Based oil the nucleotide sequences of the clones, simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers were generated, and each clone was located onto the linkage map of two accessions of L. japonicus, Gifu B-129 and Miyakojima MG-20. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

16.
Modern genomic sequencing technologies produce a large amount of data with reduced cost per base; however, this data consists of short reads. This reduction in the size of the reads, compared to those obtained with previous methodologies, presents new challenges, including a need for efficient algorithms for the assembly of genomes from short reads and for resolving repetitions. Additionally after abinitio assembly, curation of the hundreds or thousands of contigs generated by assemblers demands considerable time and computational resources. We developed Simplifier, a stand-alone software that selectively eliminates redundant sequences from the collection of contigs generated by ab initio assembly of genomes. Application of Simplifier to data generated by assembly of the genome of Corynebacterium pseudotuberculosis strain 258 reduced the number of contigs generated by ab initio methods from 8,004 to 5,272, a reduction of 34.14%; in addition, N50 increased from 1 kb to 1.5 kb. Processing the contigs of Escherichia coli DH10B with Simplifier reduced the mate-paired library 17.47% and the fragment library 23.91%. Simplifier removed redundant sequences from datasets produced by assemblers, thereby reducing the effort required for finalization of genome assembly in tests with data from Prokaryotic organisms.

Availability

Simplifier is available at http://www.genoma.ufpa.br/rramos/softwares/simplifier.xhtmlIt requires Sun jdk 6 or higher.  相似文献   

17.
Sixty-five TAC (transformation-competent artificial chromosomes) clones were selected from a genomic library of Lotus japonicus accession MG-20 based on the sequence information of expressed sequences tags (ESTs), cDNA and gene information, and their nucleotide sequences were determined. The average insert size of the TAC clone was approximately 100 kb, and the total length of the sequenced regions in this study is 6,556,100 bp. Together with the nucleotide sequences of 56 TAC clones previously reported, the regions sequenced so far total 12,029,295 bp. By comparison with the sequences in protein and EST databases and by analysis with computer programs for gene modeling, a total of 711 potential protein-encoding genes with known or predicted functions, 239 gene segments and 90 pseudogenes were identified in the newly sequenced regions. The average gene density assigned so far was 1 gene/9140 bp. The average length of the assigned genes was 2.6 kb, which is considerably larger than that assigned in the Arabidopsis thaliana genome (1.9 kb for 6451 genes). Introns were identified in approximately 73% of the potential genes, and the average number and length of the introns per gene were 3.4 and 377 bp, respectively. Simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers were generated based on the nucleotide sequences of the genomic clones obtained, and each clone was mapped onto the linkage map using the F2 mapping population derived from a cross of two accessions of L. japonicus, Gifu B-129 and Miyakojima MG-20. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

18.
DNA Data Bank of Japan (DDBJ) for genome scale research in life science   总被引:5,自引:0,他引:5  
The DNA Data Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp) has made an effort to collect as much data as possible mainly from Japanese researchers. The increase rates of the data we collected, annotated and released to the public in the past year are 43% for the number of entries and 52% for the number of bases. The increase rates are accelerated even after the human genome was sequenced, because sequencing technology has been remarkably advanced and simplified, and research in life science has been shifted from the gene scale to the genome scale. In addition, we have developed the Genome Information Broker (GIB, http://gib.genes.nig.ac.jp) that now includes more than 50 complete microbial genome and Arabidopsis genome data. We have also developed a database of the human genome, the Human Genomics Studio (HGS, http://studio.nig.ac.jp). HGS provides one with a set of sequences being as continuous as possible in any one of the 24 chromosomes. Both GIB and HGS have been updated incorporating newly available data and retrieval tools.  相似文献   

19.
A total of sixty-two clones were selected from a TAC (transformation-competent artificial chromosome) genomic library of the Lotus japonicus accession MG-20 based on the sequence information of expressed sequence tags (ESTs), cDNA and gene information, and their nucleotide sequences were determined. The length of the sequenced regions in this study is 6,682,189 bp, and the total length of the regions sequenced so far is 18,711,484 bp together with the nucleotide sequences of 121 TAC clones previously reported. By comparison with the sequences in protein and EST databases and analysis with computer programs for gene modeling, a total of 573 potential protein-coding genes with known or predicted functions, 91 gene segments and 272 pseudogenes were identified in the newly sequenced regions. Each of the sequenced clones was localized onto the linkage map of two accessions of L. japonicus, Gifu B-129 and Miyakojima MG-20, using simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers generated based on the nucleotide sequences of the clones. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

20.
A total of 56 TAC clones with an average insert size of 100 kb were isolated from a TAC library of the Lotus japonicus genome based on the expressed sequences tags (ESTs), cDNA and gene information, and their nucleotide sequences were determined according to the shot-gun based strategy. The total length of the sequenced regions is 5,473,195 bp. By comparison with the sequences in protein and EST databases and analysis with computer programs for gene modeling, a total of 605 potential protein-encoding genes with known or predicted functions, 69 gene segments, and 172 pseudogenes were identified. The average density of the genes assigned so far is 1 gene/8120 bp. Introns were identified in approximately 78% of the potential genes. There was an average of 3.8 introns per gene and the average length of the introns was 375 bp. DNA markers were generated based on the nucleotide sequences obtained, and each clone was mapped onto the linkage map using the F2 mapping population derived from a cross of L. japonicus Gifu B-129 and Miyakojima MG-20. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号