首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acetylase inhibitor, spermidine and the deacetylase activator, resveratrol, both induce autophagy and prolong life span of the model organism Caenorhabditis elegans in an autophagydependent fashion. Based on these premises, we investigated the differences and similarities in spermidine and resveratrol-induced autophagy. The deacetylase sirtuin 1 (SIRT1) and its orthologs are required for the autophagy induction by resveratrol but dispensable for autophagy stimulation by spermidine in human cells, Saccharomyces cerevisiae and C. elegans. SIRT1 is also dispensable for life-span extension by spermidine. Mass spectrometry analysis of the human acetylproteome revealed that resveratrol and/or spermidine induce changes in the acetylation of 560 peptides corresponding to 375 different proteins. Among these, 170 proteins are part of the recently elucidated human autophagy protein network. Importantly, spermidine and resveratrol frequently affect the acetylation pattern in a similar fashion. In the cytoplasm, spermidine and resveratrol induce convergent protein de-acetylation more frequently than convergent acetylation, while in the nucleus, acetylation is dominantly triggered by both agents. We surmise that subtle and concerted alterations in the acetylproteome regulate autophagy at multiple levels.  相似文献   

2.
《Autophagy》2013,9(6):647-649
The acetylase inhibitor, spermidine and the deacetylase activator, resveratrol, both induce autophagy and prolong life span of the model organism Caenorhabditis elegans in an autophagydependent fashion. Based on these premises, we investigated the differences and similarities in spermidine and resveratrol-induced autophagy. The deacetylase sirtuin 1 (SIRT1) and its orthologs are required for the autophagy induction by resveratrol but dispensable for autophagy stimulation by spermidine in human cells, Saccharomyces cerevisiae and C. elegans. SIRT1 is also dispensable for life-span extension by spermidine. Mass spectrometry analysis of the human acetylproteome revealed that resveratrol and/or spermidine induce changes in the acetylation of 560 peptides corresponding to 375 different proteins. Among these, 170 proteins are part of the recently elucidated human autophagy protein network. Importantly, spermidine and resveratrol frequently affect the acetylation pattern in a similar fashion. In the cytoplasm, spermidine and resveratrol induce convergent protein de-acetylation more frequently than convergent acetylation, while in the nucleus, acetylation is dominantly triggered by both agents. We surmise that subtle and concerted alterations in the acetylproteome regulate autophagy at multiple levels.  相似文献   

3.
Our previous studies showed that silent mating-type information regulation 2 homologue-1 (SIRT1, a deacetylase) upregulation could attenuate sepsis-induced acute kidney injury (SAKI). Upregulated SIRT1 can deacetylate certain autophagy-related proteins (Beclin1, Atg5, Atg7 and LC3) in vitro. However, it remains unclear whether the beneficial effect of SIRT1 is related to autophagy induction and the underlying mechanism of this effect is also unknown. In the present study, caecal ligation and puncture (CLP)-induced mice, and an LPS-challenged HK-2 cell line were established to mimic a SAKI animal model and a SAKI cell model, respectively. Our results demonstrated that SIRT1 activation promoted autophagy and attenuated SAKI. SIRT1 deacetylated only Beclin1 but not the other autophagy-related proteins in SAKI. SIRT1-induced autophagy and its protective effect against SAKI were mediated by the deacetylation of Beclin1 at K430 and K437. Moreover, two SIRT1 activators, resveratrol and polydatin, attenuated SAKI in CLP-induced septic mice. Our study was the first to demonstrate the important role of SIRT1-induced Beclin1 deacetylation in autophagy and its protective effect against SAKI. These findings suggest that pharmacologic induction of autophagy via SIRT1-mediated Beclin1 deacetylation may be a promising therapeutic approach for future SAKI treatment.Subject terms: Macroautophagy, Acetylation  相似文献   

4.
ABSTRACT

Caloric restriction mimetics (CRMs) are nontoxic macroautophagy/autophagy enhancers that act through the stimulation of cytoplasmic protein deacetylation reactions. Thus far, three functional classes of CRMs have been described: inhibitors of acetyltransferases (such as spermidine), inhibitors of acetyl coenzyme (AcCoA) synthesis (such as hydroxycitrate) and activators of deacetylases/sirtuins (such as resveratrol). Triethylenetetramine (also called trientine, abbreviated TETA) is a synthetic polyamine with resemblance in its structure to spermidine, a natural polyamine reputed for its pro-autophagic, anti-obesity and anti-aging effects. TETA, which is approved for the treatment of Wilson disease, has no effects on the longevity of mice, yet does induce autophagy and reduces weight gain in mice fed a high-fat diet (HFD). Mechanistically, these effects of TETA involve an increased activity of the TETA-metabolizing enzyme, SAT1 (spermidine/spermine N1-acetyltransferase 1). SAT1 overactivation ultimately results in the depletion of intracellular AcCoA with a consequent de-acetylation of cytoplasmic proteins and induction of autophagy. Accordingly, TETA fails to induce autophagy or to control HFD-induced weight gain in SAT1-deficient mice. Altogether, these findings indicate that TETA induces autophagy through a novel mode of action, namely, by the activation of an AcCoA-depleting enzyme.  相似文献   

5.
Wu Y  Li X  Zhu JX  Xie W  Le W  Fan Z  Jankovic J  Pan T 《Neuro-Signals》2011,19(3):163-174
Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models.  相似文献   

6.
Autophagy is a fundamental cellular process that eliminates long-lived proteins and damaged organelles through lysosomal degradation pathway. Cigarette smoke (CS)-mediated oxidative stress induces cytotoxic responses in lung cells. However, the role of autophagy and its mechanism in CS-mediated cytotoxic responses is not known. We hypothesized that NAD+-dependent deacetylase, sirtuin 1 (SIRT1) plays an important role in regulating autophagy in response to CS. CS exposure resulted in induction of autophagy in lung epithelial cells, fibroblasts and macrophages. Pretreatment of cells with SIRT1 activator resveratrol attenuated CS-induced autophagy whereas SIRT1 inhibitor, sirtinol, augmented CS-induced autophagy. Elevated levels of autophagy were induced by CS in the lungs of SIRT1 deficient mice. Inhibition of poly(ADP-ribose)-polymerase-1 (PARP-1) attenuated CS-induced autophagy via SIRT1 activation. These data suggest that the SIRT1-PARP-1 axis plays a critical role in the regulation of CS-induced autophagy and have important implications in understanding the mechanisms of CS-induced cell death and senescence.  相似文献   

7.
8.
微小RNA(microRNAs, miRNAs,)是一类强大的基因表达调控子,可在转录及转录后水平负调控靶基因的表达来参与生物学过程。沉默信息调节因子1 (silent information regulator1, SIRT1)底物众多,可通过去乙酰化作用参与多种细胞生命活动进程。尽管如此,SIRT1与非编码RNA如miRNA的表达调控关系仍有待深入研究。本文利用荧光定量PCR 检测发现,SIRT1与miR-221和miR-222的表达呈正相关:干扰SIRT1后,miR-221/222呈低水平表达;而过表达SIRT1则促进miR-221/222的表达。将miR-221/222基因簇启动子区序列插入pEZX-GA01构建双荧光素酶报告载体,与SIRT1过表达质粒或干扰序列共转至细胞。结果显示,SIRT1可显著提高miR-221/222启动子区活性,提示SIRT1可在转录水平调节miR-221/222的表达。进一步运用Western 印迹研究发现,在HEK293细胞中过表达miR-221/222可促进细胞的自噬能力,而抑制miR-221/222的表达可减弱自噬。此外,过表达SIRT1的同时抑制miR-221/222 的表达可减弱SIRT1的自噬诱导作用。综上所述,SIRT1可通过诱导miR-221/222的表达促进细胞自噬,其具体作用机制有待进一步探讨。  相似文献   

9.
10.
It has been widely known that slow metabolism induced by calorie restriction (CR) can extend the life span of model organisms though the underlying mechanism remains poorly understood. Accumulated evidence suggests that SIRT1 may be actively involved in CR-induced signaling pathways. As a putative activator of SIRT1, resveratrol, known for the French paradox, can partially mimic the physiological effects of CR. While the deacetylase activity of SIRT1 is important for the beneficial effects of resveratrol, resveratrol-induced SIRT1 activation has recently been challenged by the observations that resveratrol could not induce SIRT1-mediated deacetylation of native substrates in vitro. To resolve the discrepancy of resveratrol-induced activation of SIRT1 deacetylase activity between the in vitro and in vivo assays, a model of indirect SIRT1 activation by resveratrol is proposed. In this review, we will discuss the emerging roles of SIRT1 and resveratrol in CR and focus on debate over the links between SIRT1 and resveratrol.  相似文献   

11.
This review focuses on the interrelationship between ageing and autophagy. There is a striking similarity between the signalling aspects of these two processes. Both ageing and autophagy involve several of the signalling components such as insulin/IGF-1, AMPK, Ras-cAMP-PKA, Sch9 and mTOR. Ageing and ageing-mediated defective autophagy involve accumulation of lipofuscin. Components of anti-ageing and autophagy include SirTs and FoxOs. Nutritional deprivation or calorie restriction as well as several nutriceuticals including resveratrol, spermidine, curcumin and piperine can enhance autophagy and increase lifespan. Such striking similarities indicate that lifespan is strongly dependent on autophagy.  相似文献   

12.
Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called “French paradox,” i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats. At least part of the beneficial effect of resveratrol on human health stems from its capacity to promote autophagy by activating the NAD-dependent deacetylase sirtuin 1. However, the concentration of resveratrol found in red wine is excessively low to account alone for the French paradox. Here, we investigated the possibility that other mono- and polyphenols contained in red wine might induce autophagy while affecting the acetylation levels of cellular proteins. Phenolic compounds found in red wine, including anthocyanins (oenin), stilbenoids (piceatannol), monophenols (caffeic acid, gallic acid) glucosides (delphinidin, kuronamin, peonidin) and flavonoids (catechin, epicatechin, quercetin, myricetin), were all capable of stimulating autophagy, although with dissimilar potencies. Importantly, a robust negative correlation could be established between autophagy induction and the acetylation levels of cytoplasmic proteins, as determined by a novel immunofluorescence staining protocol that allows for the exclusion of nuclear components from the analysis. Inhibition of sirtuin 1 by both pharmacological and genetic means abolished protein deacetylation and autophagy as stimulated by resveratrol, but not by piceatannol, indicating that these compounds act through distinct molecular pathways. In support of this notion, resveratrol and piceatannol synergized in inducing autophagy as well as in promoting cytoplasmic protein deacetylation. Our results highlight a cause-effect relationship between the deacetylation of cytoplasmic proteins and autophagy induction by red wine components.  相似文献   

13.
Resveratrol induces mitochondrial biogenesis and protects against metabolic decline, but whether SIRT1 mediates these benefits is the subject of debate. To circumvent the developmental defects of germline SIRT1 knockouts, we have developed an inducible system that permits whole-body deletion of SIRT1 in adult mice. Mice treated with a moderate dose of resveratrol showed increased mitochondrial biogenesis and function, AMPK activation, and increased NAD(+) levels in skeletal muscle, whereas SIRT1 knockouts displayed none of these benefits. A mouse overexpressing SIRT1 mimicked these effects. A high dose of resveratrol activated AMPK in a SIRT1-independent manner, demonstrating that resveratrol dosage is a critical factor. Importantly, at both doses of resveratrol no improvements in mitochondrial function were observed in animals lacking SIRT1. Together these data indicate that SIRT1 plays an essential role in the ability of moderate doses of resveratrol to stimulate AMPK and improve mitochondrial function both in vitro and in vivo.  相似文献   

14.
It has been reported that feeding mice resveratrol activates AMPK and SIRT1 in skeletal muscle leading to deacetylation and activation of PGC-1α, increased mitochondrial biogenesis, and improved running endurance. This study was done to further evaluate the effects of resveratrol, SIRT1, and PGC-1α deacetylation on mitochondrial biogenesis in muscle. Feeding rats or mice a diet containing 4 g resveratrol/kg diet had no effect on mitochondrial protein levels in muscle. High concentrations of resveratrol lowered ATP concentration and activated AMPK in C2C12 myotubes, resulting in an increase in mitochondrial proteins. Knockdown of SIRT1, or suppression of SIRT1 activity with a dominant-negative (DN) SIRT1 construct, increased PGC-1α acetylation, PGC-1α coactivator activity, and mitochondrial proteins in C2C12 cells. Expression of a DN SIRT1 in rat triceps muscle also induced an increase in mitochondrial proteins. Overexpression of SIRT1 decreased PGC-1α acetylation, PGC-1α coactivator activity, and mitochondrial proteins in C2C12 myotubes. Overexpression of SIRT1 also resulted in a decrease in mitochondrial proteins in rat triceps muscle. We conclude that, contrary to some previous reports, the mechanism by which SIRT1 regulates mitochondrial biogenesis is by inhibiting PGC-1α coactivator activity, resulting in a decrease in mitochondria. We also conclude that feeding rodents resveratrol has no effect on mitochondrial biogenesis in muscle.  相似文献   

15.
Autophagic dysfunction is observed in diabetes mellitus. Resveratrol has a beneficial effect on diabetic cardiomyopathy. Whether the resveratrol‐induced improvement in cardiac function in diabetes is via regulating autophagy remains unclear. We investigated the mechanisms underlying resveratrol‐mediated protection against heart failure in diabetic mice, with a focus on the role of sirtuin 1 (SIRT1) in regulating autophagic flux. Diabetic cardiomyopathy in mice was induced by streptozotocin (STZ). Long‐term resveratrol treatment improved cardiac function, ameliorated oxidative injury and reduced apoptosis in the diabetic mouse heart. Western blot analysis revealed that resveratrol decreased p62 protein expression and promoted SIRT1 activity and Rab7 expression. Inhibiting autophagic flux with bafilomycin A1 increased diabetic mouse mortality and attenuated resveratrol‐induced down‐regulation of p62, but not SIRT1 activity or Rab7 expression in diabetic mouse hearts. In cultured H9C2 cells, redundant or overactive H2O2 increased p62 and cleaved caspase 3 expression as well as acetylated forkhead box protein O1 (FOXO1) and inhibited SIRT1 expression. Sirtinol, SIRT1 and Rab7 siRNA impaired the resveratrol amelioration of dysfunctional autophagic flux and reduced apoptosis under oxidative conditions. Furthermore, resveratrol enhanced FOXO1 DNA binding at the Rab7 promoter region through a SIRT1‐dependent pathway. These results highlight the role of the SIRT1/FOXO1/Rab7 axis in the effect of resveratrol on autophagic flux in vivo and in vitro, which suggests a therapeutic strategy for diabetic cardiomyopathy.  相似文献   

16.
Autophagy is a vital pathway for the removal of β-amyloid peptide (Aβ) and the aggregated proteins that cause Alzheimer’s disease (AD). We previously found that cilostazol induced SIRT1 expression and its activity in neuronal cells, and thus, we hypothesized that cilostazol might stimulate clearances of Aβ and C-terminal APP fragment β subunit (APP-CTFβ) by up-regulating autophagy.When N2a cells were exposed to soluble Aβ1–42, protein levels of beclin-1, autophagy-related protein5 (Atg5), and SIRT1 decreased significantly. Pretreatment with cilostazol (10–30 μM) or resveratrol (20 μM) prevented these Aβ1–42 evoked suppressions. LC3-II (a marker of mammalian autophagy) levels were significantly increased by cilostazol, and this increase was reduced by 3-methyladenine. To evoke endogenous Aβ overproduction, N2aSwe cells (N2a cells stably expressing human APP containing the Swedish mutation) were cultured in medium with or without tetracycline (Tet+ for 48 h and then placed in Tet- condition). Aβ and APP-CTFβ expressions were increased after 12~24 h in Tet- condition, and these increased expressions were significantly reduced by pretreating cilostazol. Cilostazol-induced reductions in the expressions of Aβ and APP-CTFβ were blocked by bafilomycin A1 (a blocker of autophagosome to lysosome fusion). After knockdown of the SIRT1 gene (to ~40% in SIRT1 protein), cilostazol failed to elevate the expressions of beclin-1, Atg5, and LC3-II, indicating that cilostazol increases these expressions by up-regulating SIRT1. Further, decreased cell viability induced by Aβ was prevented by cilostazol, and this inhibition was reversed by 3-methyladenine, indicating that the protective effect of cilostazol against Aβ induced neurotoxicity is, in part, ascribable to the induction of autophagy. In conclusion, cilostazol modulates autophagy by increasing the activation of SIRT1, and thereby enhances Aβ clearance and increases cell viability.  相似文献   

17.
Autophagy and aging   总被引:2,自引:0,他引:2  
Rubinsztein DC  Mariño G  Kroemer G 《Cell》2011,146(5):682-695
Genetic inhibition of autophagy induces degenerative changes in mammalian tissues that resemble those associated with aging, and normal and pathological aging are often associated with a reduced autophagic potential. Pharmacological or genetic manipulations that increase life span in model organisms often stimulate autophagy, and its inhibition compromises the longevity-promoting effects of caloric restriction, Sirtuin 1 activation, inhibition of insulin/insulin growth factor signaling, or the administration of rapamycin, resveratrol, or spermidine. Here, we discuss the probable cause and effect relationship between perturbed autophagy and aging, as well as possible molecular mechanisms that may mediate the anti-aging effects of autophagy.  相似文献   

18.
19.
Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called “French paradox,” i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats. At least part of the beneficial effect of resveratrol on human health stems from its capacity to promote autophagy by activating the NAD-dependent deacetylase sirtuin 1. However, the concentration of resveratrol found in red wine is excessively low to account alone for the French paradox. Here, we investigated the possibility that other mono- and polyphenols contained in red wine might induce autophagy while affecting the acetylation levels of cellular proteins. Phenolic compounds found in red wine, including anthocyanins (oenin), stilbenoids (piceatannol), monophenols (caffeic acid, gallic acid) glucosides (delphinidin, kuronamin, peonidin) and flavonoids (catechin, epicatechin, quercetin, myricetin), were all capable of stimulating autophagy, although with dissimilar potencies. Importantly, a robust negative correlation could be established between autophagy induction and the acetylation levels of cytoplasmic proteins, as determined by a novel immunofluorescence staining protocol that allows for the exclusion of nuclear components from the analysis. Inhibition of sirtuin 1 by both pharmacological and genetic means abolished protein deacetylation and autophagy as stimulated by resveratrol, but not by piceatannol, indicating that these compounds act through distinct molecular pathways. In support of this notion, resveratrol and piceatannol synergized in inducing autophagy as well as in promoting cytoplasmic protein deacetylation. Our results highlight a cause-effect relationship between the deacetylation of cytoplasmic proteins and autophagy induction by red wine components.  相似文献   

20.
Denu JM 《Cell metabolism》2012,15(5):566-567
The molecular mechanisms behind the health benefits of resveratrol remain enigmatic and controversial. In this issue of Cell Metabolism, Price et al. establish a clear chemical-genetic connection between SIRT1 and resveratrol, providing strong evidence that SIRT1 is critical for resveratrol to stimulate mitochondrial biogenesis and a switch toward oxidative muscle fibers (Price et al., 2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号