首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, assembles with a potassium channel subunit (Kir6) to form the ATP-sensitive potassium channel (K(ATP)) complex. Although SUR is an important regulator of Kir6, the specific SUR domain that associates with Kir6 is still unknown. All functional ABC proteins contain two transmembrane domains but some, including SUR and MRP1 (multidrug resistance protein 1), contain an extra N-terminal transmembrane domain called TMD0. The functions of any TMD0s are largely unclear. Using Xenopus oocytes to coexpress truncated SUR constructs with Kir6, we demonstrated by immunoprecipitation, single-oocyte chemiluminescence and electrophysiological measurements that the TMD0 of SUR1 strongly associated with Kir6.2 and modulated its trafficking and gating. Two TMD0 mutations, A116P and V187D, previously correlated with persistent hyperinsulinemic hypoglycemia of infancy, were found to disrupt the association between TMD0 and Kir6.2. These results underscore the importance of TMD0 in K(ATP) channel function, explaining how specific mutations within this domain result in disease, and suggest how an ABC protein has evolved to regulate a potassium channel.  相似文献   

2.
The ATP-sensitive potassium (K(ATP)) channel consisting of the inward rectifier Kir6.2 and SUR1 (sulfonylurea receptor 1) couples cell metabolism to membrane excitability and regulates insulin secretion. Inhibition by intracellular ATP is a hallmark feature of the channel. ATP sensitivity is conferred by Kir6.2 but enhanced by SUR1. The mechanism by which SUR1 increases channel ATP sensitivity is not understood. In this study, we report molecular interactions between SUR1 and Kir6.2 that markedly alter channel ATP sensitivity. Channels bearing an E203K mutation in SUR1 and a Q52E in Kir6.2 exhibit ATP sensitivity ~100-fold higher than wild-type channels. Cross-linking of E203C in SUR1 and Q52C in Kir6.2 locks the channel in a closed state and is reversible by reducing agents, demonstrating close proximity of the two residues. Our results reveal that ATP sensitivity in K(ATP) channels is a dynamic parameter dictated by interactions between SUR1 and Kir6.2.  相似文献   

3.
Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K+ (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas.  相似文献   

4.
ATP-sensitive potassium (KATP) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP2). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP2, SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP2 sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP2 gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation.  相似文献   

5.
ATP-sensitive potassium (K(ATP)) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP(2)). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP(2), SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP(2) sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP(2) gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation.  相似文献   

6.
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to electrical activity by regulating K(+) fluxes across the plasma membrane. Channel closure is facilitated by ATP, which binds to the pore-forming subunit (Kir6.2). Conversely, channel opening is potentiated by phosphoinositol bisphosphate (PIP(2)), which binds to Kir6.2 and reduces channel inhibition by ATP. Here, we use homology modelling and ligand docking to identify the PIP(2)-binding site on Kir6.2. The model is consistent with a large amount of functional data and was further tested by mutagenesis. The fatty acyl tails of PIP(2) lie within the membrane and the head group extends downwards to interact with residues in the N terminus (K39, N41, R54), transmembrane domains (K67) and C terminus (R176, R177, E179, R301) of Kir6.2. Our model suggests how PIP(2) increases channel opening and decreases ATP binding and channel inhibition. It is likely to be applicable to the PIP(2)-binding site of other Kir channels, as the residues identified are conserved and influence PIP(2) sensitivity in other Kir channel family members.  相似文献   

7.
Kv channel-interacting proteins (KChIPs) are auxiliary subunits of the heteromultimeric channel complexes that underlie neuronal I(SA), the subthreshold transient K(+) current that dynamically regulates membrane excitability, action potential firing properties, and long term potentiation. KChIPs form cytoplasmic associations with the principal pore-forming Kv4 subunits and typically mediate enhanced surface expression and accelerated recovery from depolarization-induced inactivation. An exception is KChIP4a, which dramatically suppresses Kv4 inactivation while promoting neither surface expression nor recovery. These unusual properties are attributed to the effects of a K channel inactivation suppressor domain (KISD) encoded within the variable N terminus of KChIP4a. Here, we have functionally and biochemically characterized two brain KChIP isoforms, KChIP2x and KChIP3x (also known as KChIP3b) and show that they also contain a functional KISD. Like KChIP4a and in contrast with non-KISD-containing KChIPs, both KChIP2x and KChIP3x strongly suppress inactivation and slow activation and inhibit the typical increases in surface expression of Kv4.2 channels. We then examined the properties of the KISD to determine potential mechanisms for its action. Subcellular fractionation shows that KChIP4a, KChIP2x, and KChIP3x are highly associated with the membrane fraction. Fluorescent confocal imaging of enhanced green fluorescent proteins (eGFP) N-terminally fused with KISD in HEK293T cells indicates that KISDs of KChIP4a, KChIP2x, and KChIP3x all autonomously target eGFP to intracellular membranes. Cell surface biotinylation experiments on KChIP4a indicate that the N terminus is exposed extracellularly, consistent with a transmembrane KISD. In summary, KChIP4a, KChIP2x, and KChIP3x comprise a novel class of KChIP isoforms characterized by an unusual transmembrane domain at their N termini that modulates Kv4 channel gating and trafficking.  相似文献   

8.
Adenosine triphosphate (ATP)-sensitive K^* (KATP) channels regulate many cellular functions by coupling the metabolic state of the cell to the changes in membrane potential. Truncation of C-terminal 26 amino acid residues of Kir6.2 protein (Kir6.2ΔC26) deletes its endoplasmic reticulum retention signal, allowing functional expression of Kit6.2 in the absence of sulfonylurea receptor subunit, pEGFP-Kir6.2ΔC26 and pKir6.2ΔC26-IRES2-EGFP expression plasmids were constructed and transfected into HEK293 cells. We identified that Kir6.2ΔC26 was localized on the plasma membrane and trafficked to the plasmalemma by means of constitutive exocytosis of Kir6.2ΔC26 transport vesicles, using epi-fluorescence and total intemal reflection fluorescence microscopy. Our electrophysiological data showed that Kir6.2ΔC26 alone expressed KATP currents, whereas EGFP-Kir6.2ΔC26 fusion protein displayed no KATP channel activity.  相似文献   

9.
KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. The molecular interactions between SUR1 and Kir6.2 that govern channel gating and biogenesis are incompletely understood. In a recent study, we showed that a SUR1 and Kir6.2 mutation pair, E203K-SUR1 and Q52E-Kir6.2, at the SUR1/Kir6.2 interface near the plasma membrane increases the ATP-sensitivity of the channel by nearly 100-fold. Here, we report the finding that the same mutation pair also suppresses channel folding/trafficking defects caused by select SUR1 mutations in the first transmembrane domain of SUR1. Analysis of the contributions from individual mutations, however, revealed that the correction effect is attributed largely to Q52E-Kir6.2 alone. Moreover, the correction is dependent on the negative charge of the substituting amino acid at the Q52 position in Kir6.2. Our study demonstrates for the first time that engineered mutations in Kir6.2 can correct the biogenesis defect caused by specific mutations in the SUR1 subunit.  相似文献   

10.
Na(+) absorption and K(+) secretion in the distal segments of the nephron are modulated by the tubular flow rate. Epithelial Na(+) channels (ENaC), composed of α-, β-, and γ-subunits respond to laminar shear stress (LSS) with an increase in open probability. Higher vertebrates express a δ-ENaC subunit that is functionally related to the α-subunit, while sharing only 35% of sequence identity. We investigated the response of δβγ channels to LSS. Both the time course and magnitude of activation of δβγ channels by LSS were remarkably different from those of αβγ channels. ENaC subunits have similar topology, with an extracellular region connected by two transmembrane domains with intracellular N and C termini. To identify the specific domains that are responsible for the differences in the response to flow of αβγ and δβγ channels, we generated a series of α-δ chimeras and site-specific α-subunit mutants and examined parameters of activation by LSS. We found that specific sites in the region encompassing and just preceding the second transmembrane domain were responsible for the differences in the magnitude and time course of channel activation by LSS.  相似文献   

11.
ATP-sensitive potassium (K(ATP)) channels play important roles in many cellular functions such as hormone secretion and excitability of muscles and neurons. Classical ATP-sensitive potassium (K(ATP)) channels are heteromultimeric membrane proteins comprising the pore-forming Kir6.2 subunits and the sulfonylurea receptor subunits (SUR1 or SUR2). The molecular mechanism by which hormones and neurotransmitters modulate K(ATP) channels via protein kinase A (PKA) is poorly understood. We mutated the PKA consensus sequences of the human SUR1 and Kir6.2 subunits and tested their phosphorylation capacities in Xenopus oocyte homogenates and in intact cells. We identified the sites responsible for PKA phosphorylation in the C-terminus of Kir6.2 (S372) and SUR1 (S1571). Kir6.2 can be phosphorylated at its PKA phosphorylation site in intact cells after G-protein (Gs)-coupled receptor or direct PKA stimulation. While the phosphorylation of Kir6.2 increases channel activity, the phosphorylation of SUR1 contributes to the basal channel properties by decreasing burst duration, interburst interval and open probability, and also increasing the number of functional channels at the cell surface. Moreover, the effect of PKA could be mimicked by introducing negative charges in the PKA phosphorylation sites. These data demonstrate direct phosphorylation by PKA of the K(ATP) channel, and may explain the mechanism by which Gs-coupled receptors stimulate channel activity. Importantly, they also describe a model of heteromultimeric ion channels in which there are functionally distinct roles of the phosphorylation of the different subunits.  相似文献   

12.
The nicotinic receptor (AChR) is a pentamer of homologous subunits with an alpha(2)betaepsilondelta composition in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 15' of the M1 domain is phenylalanine in alpha subunits while it is isoleucine in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle AChR activation by combining mutagenesis with single-channel kinetic analysis. AChRs containing the mutant alpha subunit (alphaF15'I) as well as those containing the reverse mutations in the non-alpha subunits (betaI15'F, deltaI15'F, and epsilonI15'F) show prolonged lifetimes of the diliganded open channel resulting from a slower closing rate with respect to wild-type AChRs. The kinetic changes are not equivalent among subunits, the beta subunit, being the one that produces the most significant stabilization of the open state. Kinetic analysis of betaI15'F of AChR channels activated by the low-efficacious agonist choline revealed a 10-fold decrease in the closing rate, a 2.5-fold increase in the opening rate, a 28-fold increase in the gating equilibrium constant in the diliganded receptor, and a significant increase opening in the absence of agonist. Mutations at betaI15' showed that the structural bases of its contribution to gating is complex. Rate-equilibrium linear free-energy relationships suggest an approximately 70% closed-state-like environment for the beta15' position at the transition state of gating. The overall results identify position 15' as a subunit-selective determinant of channel gating and add new experimental evidence that gives support to the involvement of the M1 domain in the operation of the channel gating apparatus.  相似文献   

13.
Inhibition by intracellular H(+) (pH gating) and activation by phosphoinositides such as PIP(2) (PIP(2)-gating) are key regulatory mechanisms in the physiology of inwardly-rectifying potassium (Kir) channels. Our recent findings suggest that PIP(2) gating and pH gating are controlled by an intra-subunit H-bond at the helix-bundle crossing between a lysine in TM1 and a backbone carbonyl group in TM2. This interaction only occurs in the closed state and channel opening requires this H-bond to be broken, thereby influencing the kinetics of PIP(2) and pH gating in Kir channels. In this addendum, we explore the role of H-bonding in heteromeric Kir4.1/Kir5.1 channels. Kir5.1 subunits do not possess a TM1 lysine. However, homology modelling and molecular dynamics simulations demonstrate that the TM1 lysine in Kir4.1 is capable of H-bonding at the helix-bundle crossing. Consistent with this, the rates of pH and PIP2 gating in Kir4.1/Kir5.1 channels (two H-bonds) were intermediate between those of wild-type homomeric Kir4.1 (four H-bonds) and Kir4.1(K67M) channels (no H-bonds) suggesting that the number of H-bonds in the tetrameric channel complex determines the gating kinetics. Furthermore, in heteromeric Kir4.1(K67M)/Kir5.1 channels, where the two remaining H-bonds are disrupted, we found that the gating kinetics were similar to Kir4.1(K67M) homomeric channels despite the fact that these two channels differ considerably in their PIP(2) affinities. This indicates that Kir channel PIP(2) affinity has little impact on either the PIP(2) or pH gating kinetics.  相似文献   

14.
A conserved eag domain in the cytoplasmic amino terminus of the human ether-a-go-go-related gene (hERG) potassium channel is critical for its slow deactivation gating. Introduction of gene fragments encoding the eag domain are able to restore normal deactivation properties of channels from which most of the amino terminus has been deleted, and also those lacking exclusively the eag domain or carrying a single point mutation in the initial residues of the N-terminus. Deactivation slowing in the presence of the recombinant domain is not observed with channels carrying a specific Y542C point mutation in the S4-S5 linker. On the other hand, mutations in some initial positions of the recombinant fragment also impair its ability to restore normal deactivation. Fluorescence resonance energy transfer (FRET) analysis of fluorophore-tagged proteins under total internal reflection fluorescence (TIRF) conditions revealed a substantial level of FRET between the introduced N-terminal eag fragments and the eag domain-deleted channels expressed at the membrane, but not between the recombinant eag domain and full-length channels with an intact amino terminus. The FRET signals were also minimized when the recombinant eag fragments carried single point mutations in the initial portion of their amino end, and when Y542C mutated channels were used. These data suggest that the restoration of normal deactivation gating by the N-terminal recombinant eag fragment is an intrinsic effect of this domain directed by the interaction of its N-terminal segment with the gating machinery, likely at the level of the S4-S5 linker.  相似文献   

15.
The fourth transmembrane domain (M4) of the nicotinic acetylcholine receptor (AChR) contributes to the kinetics of activation, yet its close association with the lipid bilayer makes it the outermost of the transmembrane domains. To investigate mechanistic and structural contributions of M4 to AChR activation, we systematically mutated alphaT422, a conserved residue that has been labeled by hydrophobic probes, and evaluated changes in rate constants underlying ACh binding and channel gating steps. Aromatic and nonpolar mutations of alphaT422 selectively affect the channel gating step, slowing the rate of opening two- to sevenfold, and speeding the rate of closing four- to ninefold. Additionally, kinetic modeling shows a second doubly liganded open state for aromatic and nonpolar mutations. In contrast, serine and asparagine mutations of alphaT422 largely preserve the kinetics of the wild-type AChR. Thus, rapid and efficient gating of the AChR channel depends on a hydrogen bond involving the side chain at position 422 of the M4 transmembrane domain.  相似文献   

16.
We previously showed that activation of the human endothelin A receptor (HETAR) by endothelin-1 (Et-1) selectively inhibits the response to mu opioid receptor (MOR) activation of the G-protein-gated inwardly rectifying potassium channel (Kir3). The Et-1 effect resulted from PLA2 production of an eicosanoid that inhibited Kir3. In this study, we show that Kir3 inhibition by eicosanoids is channel subunit-specific, and we identify the site within the channel required for arachidonic acid sensitivity. Activation of the G-protein-coupled MOR by the selective opioid agonist D-Ala(2)Glyol, enkephalin, released Gbetagamma that activated Kir3. The response to MOR activation was significantly inhibited by Et-1 activation of HETAR in homomeric channels composed of either Kir3.2 or Kir3.4. In contrast, homomeric channels of Kir3.1 were substantially less sensitive. Domain deletion and channel chimera studies suggested that the sites within the channel required for Et-1-induced inhibition were within the region responsible for channel gating. Mutation of a single amino acid in the homomeric Kir3.1 to produce Kir3.1(F137S)(N217D) dramatically increased the channel sensitivity to arachidonic acid and Et-1 treatment. Complementary mutation of the equivalent amino acid in Kir3.4 to produce Kir3.4(S143T)(D223N) significantly reduced the sensitivity of the channel to arachidonic acid- and Et-1-induced inhibition. The critical aspartate residue required for eicosanoid sensitivity is the same residue required for Na(+) regulation of PIP(2) gating. The results suggest a model of Kir3 gating that incorporates a series of regulatory steps, including Gbetagamma, PIP(2), Na(+), and arachidonic acid binding to the channel gating domain.  相似文献   

17.
KCNEs are a family of genes encoding small integral membrane proteins whose role in governing voltage-gated potassium channel gating is emerging. Whether each member of this homologous family interacts with channel proteins in the same manner is unknown; however, it is clear that the functional effect of each KCNE on channel gating is different. The specificity of KCNE1 (minK) and KCNE3 control of activation of the potassium channel KvLQT1 maps to a triplet of amino acids within the KCNE transmembrane domain by chimera analysis. We now define the structural determinants of functional specificity within this triplet. The central amino acid of the triplet (Thr-58 of minK and Val-72 of KCNE3) is essential for the specific control of voltage-dependent channel activation characteristics of both minK and KCNE3. Using site-directed mutations that substitute minK and KCNE3 residues, we determined that a hydroxylated central amino acid is necessary for the slow sigmoidal activation produced by minK. The precise spacing of the hydroxyl group was required for minK-like activation. An aliphatic amino acid substituted at position 58 of minK is capable of reproducing KCNE3-like kinetics and voltage-independent constitutive current activation. The bulk of the central residue is another critical parameter, indicating precise positioning of this portion of the KCNE proteins within the channel complex. An intermediate phenotype produced by several smaller aliphatic-substituted mutants yields conditional voltage independence that is distinct from the voltage-dependent gating process, suggesting that KCNE3 traps the channel in a stable open state. From these results, we propose a model of KCNE-potassium channel interaction where the functional consequence depends on the precise contact at a single amino acid.  相似文献   

18.
Rundown is a generally encountered problem while recording KATP channel activity with inside-out patches. No assigned structural fragment related to this mechanism has yet been derived from any of the functional analyses performed. Therefore, based on a combined sequence and secondary structure alignment against known crystal structure of segments from closely related proteins, we propose here the three-dimensional structural model of an intracellular C-terminal domain of the Kir6.2 subunit in KATP channels. An E. coli CMP-kinase was suggested as template for the model building. The subdomain arrangement of this novel kinase domain and the structural correlation for UDP-docking are described. With structural-functional interpretation, we conclude that the reactivation of KATP channel rundown by MgATP or UDP is very possibly regulated by this intracellular kinase domain at the C-terminus of Kir6.2 subunit in KATP channels.  相似文献   

19.
The sensitivity of K(ATP) channels to high-affinity block by sulfonylureas and to stimulation by K(+) channel openers and MgADP (PCOs) is conferred by the regulatory sulfonylurea receptor (SUR) subunit, whereas ATP inhibits the channel through interaction with the inward rectifier (Kir6.2) subunit. Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) profoundly antagonized ATP inhibition of K(ATP) channels expressed from cloned Kir6.2+SUR1 subunits, but also abolished high affinity tolbutamide sensitivity. By stabilizing the open state of the channel, PIP(2) drives the channel away from closed state(s) that are preferentially affected by high affinity tolbutamide binding, thereby producing an apparent loss of high affinity tolbutamide inhibition. Mutant K(ATP) channels (Kir6. 2[DeltaN30] or Kir6.2[L164A], coexpressed with SUR1) also displayed an "uncoupled" phenotype with no high affinity tolbutamide block and with intrinsically higher open state stability. Conversely, Kir6. 2[R176A]+SUR1 channels, which have an intrinsically lower open state stability, displayed a greater high affinity fraction of tolbutamide block. In addition to antagonizing high-affinity block by tolbutamide, PIP(2) also altered the stimulatory action of the PCOs, diazoxide and MgADP. With time after PIP(2) application, PCO stimulation first increased, and then subsequently decreased, probably reflecting a common pathway for activation of the channel by stimulatory PCOs and PIP(2). The net effect of increasing open state stability, either by PIP(2) or mutagenesis, is an apparent "uncoupling" of the Kir6.2 subunit from the regulatory input of SUR1, an action that can be partially reversed by screening negative charges on the membrane with poly-L-lysine.  相似文献   

20.
Multiple ion channels have now been shown to be regulated by phosphatidylinositol 4,5-bisphosphate (PIP2) at the cytoplasmic face of the membrane. However, direct evidence for a specific interaction between phosphoinositides and ion channels is critically lacking. We reconstituted pure KirBac1.1 and KcsA protein into liposomes of defined composition (3:1 phosphatidylethanolamine:phosphatidylglycerol) and examined channel activity using a 86Rb+ uptake assay. We demonstrate direct modulation by PIP2 of KirBac1.1 but not KcsA activity. In marked contrast to activation of eukaryotic Kir channels by PIP2, KirBac1.1 is inhibited by PIP2 incorporated in the membrane (K(1/2) = 0.3 mol %). The dependence of inhibition on the number of phosphate groups and requirement for a lipid tail matches that for activation of eukaryotic Kir channels, suggesting a fundamentally similar interaction mechanism. The data exclude the possibility of indirect modulation via cytoskeletal or other intermediary elements and establish a direct interaction of the channel with PIP2 in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号