首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Interkingdom gene transfer is limited by a combination of physical, biological, and genetic barriers. The results of greenhouse experiments involving transplastomic plants (genetically engineered chloroplast genomes) cocolonized by pathogenic and opportunistic soil bacteria demonstrated that these barriers could be eliminated. The Acinetobacter sp. strain BD413, which is outfitted with homologous sequences to chloroplastic genes, coinfected a transplastomic tobacco plant with Ralstonia solanacearum and was transformed by the plant's transgene (aadA) containing resistance to spectinomycin and streptomycin. However, no transformants were observed when the homologous sequences were omitted from the Acinetobacter sp. strain. Detectable gene transfer from these transgenic plants to bacteria were dependent on gene copy number, bacterial competence, and the presence of homologous sequences. Our data suggest that by selecting plant transgene sequences that are nonhomologous to bacterial sequences, plant biotechnologists could restore the genetic barrier to transgene transfer to bacteria.  相似文献   

2.
Interkingdom gene transfer is limited by a combination of physical, biological, and genetic barriers. The results of greenhouse experiments involving transplastomic plants (genetically engineered chloroplast genomes) cocolonized by pathogenic and opportunistic soil bacteria demonstrated that these barriers could be eliminated. The Acinetobacter sp. strain BD413, which is outfitted with homologous sequences to chloroplastic genes, coinfected a transplastomic tobacco plant with Ralstonia solanacearum and was transformed by the plant's transgene (aadA) containing resistance to spectinomycin and streptomycin. However, no transformants were observed when the homologous sequences were omitted from the Acinetobacter sp. strain. Detectable gene transfer from these transgenic plants to bacteria were dependent on gene copy number, bacterial competence, and the presence of homologous sequences. Our data suggest that by selecting plant transgene sequences that are nonhomologous to bacterial sequences, plant biotechnologists could restore the genetic barrier to transgene transfer to bacteria.  相似文献   

3.
Removal of antibiotic resistance genes from transgenic tobacco plastids   总被引:24,自引:0,他引:24  
Iamtham S  Day A 《Nature biotechnology》2000,18(11):1172-1176
Removal of antibiotic resistance genes from genetically modified (GM) crops removes the risk of their transfer to the environment or gut microbes. Integration of foreign genes into plastid DNA enhances containment in crops that inherit their plastids maternally. Efficient plastid transformation requires the aadA marker gene, which confers resistance to the antibiotics spectinomycin and streptomycin. We have exploited plastid DNA recombination and cytoplasmic sorting to remove aadA from transplastomic tobacco plants. A 4.9 kbp insert, composed of aadA flanked by bar and uidA genes, was integrated into plastid DNA and selected to remove wild-type plastid genomes. The bar gene confers tolerance to the herbicide glufosinate despite being GC-rich. Excision of aadA and uidA mediated by two 174 bp direct repeats generated aadA-free T(0) transplastomic plants containing the bar gene. Removal of aadA and bar by three 418 bp direct repeats allowed the isolation of marker-free T(2) plants containing a plastid-located uidA reporter gene.  相似文献   

4.
定点整合抗虫基因到油菜叶绿体基因组并获得转基因植株   总被引:16,自引:1,他引:15  
以基因枪法进行了油菜叶绿体基因组的定点转化,载体pNRAB携带抗壮观霉素的筛选标记基因aadA和抗虫基因cry1Aα10,基因的两侧被添加了可用于同源重组的叶绿体DNA序列,基因枪轰击过的油菜子叶柄经植株再生和壮观霉素筛选,获得了36株抗性植株,PCR检测和Southern杂交显示,其中4株的叶绿体基因组已被转化,外源基因已被定点整合进叶绿体基因组的rps7和ndhB基因之间。用转基因植株的叶片饲喂二龄小菜蛾,1周后幼虫死亡率达33%-47%,存活幼虫的生长明显减慢,转基因油菜的叶片受害较轻。  相似文献   

5.
6.
A major limitation of crop biotechnology and breeding is the lack of efficient molecular technologies for precise engineering of target genomic loci. While transformation procedures have become routine for a growing number of plant species, the random introduction of complex transgenenic DNA into the plant genome by current methods generates unpredictable effects on both transgene and homologous native gene expression. The risk of transgene transfer into related plant species and consumers is another concern associated with the conventional transformation technologies. Various approaches to avoid or eliminate undesirable transgenes, most notably selectable marker genes used in plant transformation, have recently been developed. These approaches include cotransformation with two independent T-DNAs or plasmid DNAs followed by their subsequent segregation, transposon-mediated DNA elimination, and most recently, attempts to replace bacterial T-DNA borders and selectable marker genes with functional equivalents of plant origin. The use of site-specific recombination to remove undesired DNA from the plant genome and concomitantly, via excision-mediated DNA rearrangement, switch-activate by choice transgenes of agronomical, food or feed quality traits provides a versatile “transgene maintenance and control” strategy that can significantly contribute to the transfer of transgenic laboratory developments into farming practice. This review focuses on recent reports demonstrating the elimination of undesirable transgenes (essentially selectable marker and recombinase genes) from the plant genome and concomitant activation of a silent transgene (e.g., a reporter gene) mediated by different site-specific recombinases driven by constitutive or chemically, environmentally or developmentally regulated promoters. These reports indicate major progress in excision strategies which extends application of the technology from annual, sexually propagated plants towards perennial, woody and vegetatively propagated plants. Current trends and future prospects for optimization of excision-activation machinery and its practical implementation for the generation of transgenic plants and plant products free of undesired genes are discussed.  相似文献   

7.
The fate of transplastomic (chloroplast genome contains the transgene) tobacco plant DNA in planta was studied when the plant leaves were subjected to decay conditions simulating those encountered naturally, including grinding, incubation with cellulase or enzymes produced by Erwinia chrysanthemi, and attack by the plant pathogen Ralstonia solanacearum. Direct visualization of DNA on agarose gels, gene extraction yield (the number of amplifiable aadA sequences in extracted plant DNA), and the frequency that recipient bacteria can be transformed by plant DNA were used to evaluate the quality and quantity of plant DNA and the transgene. These measurements were used to monitor the physical and biological degradation of DNA inside decaying plant tissues. Our results indicate that while most of the DNA will be degraded inside plant cells, sufficient DNA persists to be released into the soil.  相似文献   

8.
Plastid transformation is an attractive technology for obtaining crop plants with new useful characteristics and for fundamental researches of plastid functioning and nuclear-plastid interaction. The aim of our experiments was to obtain plants with Lycium barbarum nucleus and transformed Nicotiana tabacum plastids. Plastome of previously engineered transplastomic tobacco plants contains reporter uidA gene and selective aadA gene that confers resistance to antibiotics spectinomycin and streptomycin. Asymmetric somatic hybridization was performed for transferring transformed tobacco plastids from transplastomic tobacco plants into recipient L. barbarum wild type plants. Hybrid L. barbarum plants containing transformed tobacco plastome with active aadA and uidA genes were obtained as a result of the experiments. The work shows the possibility of obtaining transplastomic plants by transferring the transformed plastids to remote species by using somatic hybridization technology. The developed technique is especially effective for obtaining transplastomic plants that have low regeneration and transformation ability.  相似文献   

9.
The development of natural competence by bacteria in situ is considered one of the main factors limiting transformation-mediated gene exchanges in the environment. Ralstonia solanacearum is a plant pathogen that is also a naturally transformable bacterium that can develop the competence state during infection of its host. We have attempted to determine whether this bacterium could become the recipient of plant genes. We initially demonstrated that plant DNA was released close to the infecting bacteria. We constructed and tested various combinations of transgenic plants and recipient bacteria to show that the effectiveness of such transfers was directly related to the ratio of the complexity of the plant genome to the number of copies of the transgene.  相似文献   

10.
The development of natural competence by bacteria in situ is considered one of the main factors limiting transformation-mediated gene exchanges in the environment. Ralstonia solanacearum is a plant pathogen that is also a naturally transformable bacterium that can develop the competence state during infection of its host. We have attempted to determine whether this bacterium could become the recipient of plant genes. We initially demonstrated that plant DNA was released close to the infecting bacteria. We constructed and tested various combinations of transgenic plants and recipient bacteria to show that the effectiveness of such transfers was directly related to the ratio of the complexity of the plant genome to the number of copies of the transgene.  相似文献   

11.
Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes.  相似文献   

12.
Conjugative transfer of a broad-host range plasmid and transformation-mediated transfer of chromosomal genes were found to occur at significant frequencies between Ralstonia solanacearum and Acinetobacter sp. in planta. These intergeneric gene transfers are related to the conditions provided by the infected plant, including the extensive multiplication of these two bacteria in planta and the development of a competence state in Acinetobacter sp. Although interkingdom DNA transfer from nuclear transgenic plants to these bacteria was not detectable, plants infected by pathogens (e.g., Ralstonia solanacearum) and co-colonized by soil saprophyte bacteria (e.g., Acinetobacter sp.) can be considered as potential "hot spots" for gene transfer, even between phylogenetically remote organisms.  相似文献   

13.
Conventional Agrobacterium-mediated plant transformation often produces a significant frequency of transgenic events containing vector backbone sequence, which is generally undesirable for biotechnology applications. We tested methods to reduce the frequency of transgenic plants containing vector backbone by incorporating genes into the backbone that inhibit the development of transgenic plants. Four backbone frequency reduction genes, bacterial levansucrase (sacB), maize cytokinin oxidase (CKX), Phaseolus GA 2-oxidase (GA 2-ox), and bacterial phytoene synthase (crtB), each expressed by the enhanced CaMV 35S promoter, were placed individually in a binary vector backbone near the left border (LB) of binary vectors. In transformed soybean plants, the lowest frequency of backbone presence was observed when the constitutively expressed CKX gene was used, followed by crtB. Higher backbone frequencies were found among the plants transformed with the GA 2-oxidase and sacB vectors. In some events, transfer of short backbone fragments appeared to be caused by LB readthrough and termination within the backbone reduction gene. To determine the effect of the backbone genes on transformation frequency, the crtB and CKX vectors were then compared to a control vector in soybean transformation experiments. The results revealed that there was no significant transformation frequency difference between the crtB and control vectors, but the CKX vector showed a significant transformation frequency decrease. Molecular analysis revealed that the frequency of transgenic plants containing one or two copies of the transgene and free of backbone was significantly increased by both the CKX and crtB backbone reduction vectors, indicating that there may be a correlation between transgene copy number and backbone frequency.  相似文献   

14.
Besides the well-documented integration of DNA flanked by the transfer DNA borders, occasional insertion of fragments from the tumor-inducing plasmid into plant genomes has also been reported during Agrobacterium tumefaciens-mediated transformation. We demonstrate that large (up to approximately 18 kb) gene-bearing fragments of Agrobacterium chromosomal DNA (AchrDNA) can be integrated into Arabidopsis thaliana genomic DNA during transformation. One in every 250 transgenic plants may carry AchrDNA fragments. This has implications for horizontal gene transfer and indicates a need for greater scrutiny of transgenic plants for undesired bacterial DNA.  相似文献   

15.
Transgenic plastids in basic research and plant biotechnology   总被引:20,自引:0,他引:20  
Facile methods of genetic transformation are of outstanding importance for both basic and applied research. For many years, transgenic technologies for plants were restricted to manipulations of the nuclear genome. More recently, a second genome of the plant cell has become amenable to genetic engineering: the prokaryotically organized circular genome of the chloroplast. The possibility to directly manipulate chloroplast genome-encoded information has paved the way to detailed in vivo studies of virtually all aspects of plastid gene expression. Moreover, plastid transformation technologies have been intensely used in functional genomics by performing gene knockouts and site-directed mutageneses of plastid genes. These studies have contributed greatly to our understanding of the physiology and biochemistry of biogenergetic processes inside the plastid compartment. Plastid transformation technologies have also stirred considerable excitement among plant biotechnologists, since transgene expression from the plastid genome offers a number of most attractive advantages, including high-level foreign protein expression and transgene containment due to lack of pollen transmission. This review describes the generation of plants with transgenic plastids, summarizes our current understanding of the transformation process and highlights selected applications of transplastomic technologies in basic and applied research.  相似文献   

16.
Strategies employed for the production of genetically modified (GM) crops are premised on (1) the avoidance of gene transfer in the field; (2) the use of genes derived from edible organisms such as plants; (3) preventing the appearance of herbicide-resistant weeds; and (4) maintaining transgenes without obstructing plant cell propagation. To this end, we developed a novel vector system for chloroplast transformation with acetolactate synthase (ALS). ALS catalyzes the first step in the biosynthesis of the branched amino acids, and its enzymatic activity is inhibited by certain classes of herbicides. We generated a series of Arabidopsis (Arabidopsis thaliana) mutated ALS (mALS) genes and introduced constructs with mALS and the aminoglycoside 3'-adenyltransferase gene (aadA) into the tobacco (Nicotiana tabacum) chloroplast genome by particle bombardment. Transplastomic plants were selected using their resistance to spectinomycin. The effects of herbicides on transplastomic mALS activity were examined by a colorimetric assay using the leaves of transplastomic plants. We found that transplastomic G121A, A122V, and P197S plants were specifically tolerant to pyrimidinylcarboxylate, imidazolinon, and sulfonylurea/pyrimidinylcarboxylate herbicides, respectively. Transplastomic plants possessing mALSs were able to grow in the presence of various herbicides, thus affirming the relationship between mALSs and the associated resistance to herbicides. Our results show that mALS genes integrated into the chloroplast genome are useful sustainable markers that function to exclude plants other than those that are GM while maintaining transplastomic crops. This investigation suggests that the resistance management of weeds in the field amid growing GM crops is possible using (1) a series of mALSs that confer specific resistance to herbicides and (2) a strategy that employs herbicide rotation.  相似文献   

17.
Plastid marker-gene excision by transiently expressed CRE recombinase   总被引:8,自引:0,他引:8  
We report plastid marker-gene excision with a transiently expressed CRE, site-specific recombinase. This is a novel protocol that enables rapid removal of marker genes from the approximately 10,000 plastid genome copies without transformation of the plant nucleus. Plastid marker excision was tested in tobacco plants transformed with a prototype polycistronic plastid vector, pPRV110L, designed to express multiple genes organized in an operon. The pMHB10 and pMHB11 constructs described here are dicistronic and encode genes for herbicide (bar) and spectinomycin (aadA) resistance. In vector pMHB11, expression of herbicide resistance is dependent on conversion of an ACG codon to an AUG translation initiation codon by mRNA editing, a safety feature that prevents translation of the mRNA in prokaryotes and in the plant nucleus. In the vectors, the marker gene (aadA) is flanked by 34-bp loxP sites for excision by CRE. Marker excision by a transiently expressed CRE involves introduction of CRE in transplastomic leaves by agro-infiltration, followed by plant regeneration. In tobacco transformed with vectors pMHB10 and pMHB11, Southern analysis and PCR identified approximately 10% of the regenerated plants as marker-free.  相似文献   

18.
Expression of bar in the plastid genome confers herbicide resistance   总被引:12,自引:0,他引:12  
Lutz KA  Knapp JE  Maliga P 《Plant physiology》2001,125(4):1585-1590
Phosphinothricin (PPT) is the active component of a family of environmentally safe, nonselective herbicides. Resistance to PPT in transgenic crops has been reported by nuclear expression of a bar transgene encoding phosphinothricin acetyltransferase, a detoxifying enzyme. We report here expression of a bacterial bar gene (b-bar1) in tobacco (Nicotiana tabacum cv Petit Havana) plastids that confers field-level tolerance to Liberty, an herbicide containing PPT. We also describe a second bacterial bar gene (b-bar2) and a codon-optimized synthetic bar (s-bar) gene with significantly elevated levels of expression in plastids (>7% of total soluble cellular protein). Although these genes are expressed at a high level, direct selection thus far did not yield transplastomic clones, indicating that subcellular localization rather than the absolute amount of the enzyme is critical for direct selection of transgenic clones. The codon-modified s-bar gene is poorly expressed in Escherichia coli, a common enteric bacterium, due to differences in codon use. We propose to use codon usage differences as a precautionary measure to prevent expression of marker genes in the unlikely event of horizontal gene transfer from plastids to bacteria. Localization of the bar gene in the plastid genome is an attractive alternative to incorporation in the nuclear genome since there is no transmission of plastid-encoded genes via pollen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号