首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A restriction fragment length polymorphism was detected in pig DNA digested with Hind III restriction endonuclease and probed with rabbit beta 1-globin gene. Eight different phenotypes were observed and for six of them family data demonstrated that they are determined by three alleles. As this polymorphism is not found with four other restriction endonucleases (Bam HI, Eco RI, Kpn I, and Pst I), single point mutations are proposed to explain the observed differences.  相似文献   

2.
Protein arginine N-methyltransferase 2 (PRMT2), also named HRMT1L1, belongs to the Bovine Protein arginine N-methyltransferase (PRMT) genes which are involved in the immune response. To explore the variability of the PRMT2 gene and resistance to mastitis in cows, splice variant (SV), and single nucleotide polymorphisms (SNPs) were identified in this study. A SV (PRMT2-SV) lacking exon 7 (98-bp) of the PRMT2 gene was found in healthy and mastitis-infected mammary gland tissues. Two of four SNPs were significantly associated with bovine milk yield and protein content. Further, we estimated the relative expression of PRMT2-SV in the mammary gland tissue of dairy cattle by using quantitative real-time polymerase chain reaction. The result showed that expression of the PRMT2-SV mRNA was significantly upregulated 4.02-fold (p < 0.05) in infected mammary tissues (n = 5) compared to healthy tissues (n = 5). Our findings reveal that PRMT2-SV may play an important role in mastitis resistance in dairy cattle. The SNPs may be used as a possible candidate SNPs for marker-assisted selection and management in Chinese Holstein cattle.  相似文献   

3.
The gene for prosaposin was characterized by sequence analysis of chromosomal DNA to gain insight into the evolution of this locus that encodes four highly conserved sphingolipid activator proteins or saposins. The 13 exons ranged in size from 57 to 1200 bp, while the introns were from 91 to 3812 bp in length. The regions encoding saposins A, B, and D each had three exons, while that for saposin C had only two. This sequence included the regions that encode the carboxy terminus of the signal peptide, the four mature prosaposin proteins, and the 3' untranslated region. Primer extension studies indicated that over 99% of the coding sequence was contained in these 19,985 bp. Use of PCR and reverse PCR techniques indicated that the most 5' coding approximately 140 bp contained large introns and at least two small exons. Analyses of the intronic positions in the saposin regions indicated that this gene evolved from an ancestral gene by two duplication events and at least one gene rearrangement involving a double crossover after introns had been inserted into the gene.  相似文献   

4.
5.
6.
Lactose intolerance in northern Europeans is strongly associated with a single-nucleotide polymorphism (SNP) located 14 kb upstream of the human lactase gene: − 13,910*C/T. We examined whether SNPs in the 5′ flanking region of the pig lactase gene are similar to those in the human gene and whether these polymorphisms play a functional role in regulating pig lactase gene expression. The 5′ flanking region of the lactase gene from several different breeds of pigs was cloned and analyzed for gene regulatory activity of a luciferase reporter gene. One SNP was found in the enhancer region (− 797*G/A) and two were found in the promoter region (− 308*G/C and − 301*A/G). The promoter C− 308,G− 301(Pro-CG) strongly promotes the expression of the lactase gene, but the promoter G− 308,A− 301(Pro-GA) does not. The enhancer A− 797(Enh-A) genotype for Pro-GA can significantly enhance promoter activity, but has an inhibitory effect on Pro-CG. The Enhancer G− 797(Enh-G) has a significant inhibitory effect on both promoters. In conclusion, the order of effectiveness on the pig lactase gene is Enh-A + Pro-GA > Enh-A/G + Pro-CG > Enh-G + Pro-GA.  相似文献   

7.
8.
9.
10.
sall4基因是sall基因家族的一个成员,在胚胎发育、器官形成和干细胞多能性的维持以及重建中都起到重要作用,有sall4a和sall4b两种剪切突变体类型。目前猪的sall4基因序列尚未获得。鉴于其在多能性细胞调控中的作用,对猪的sall4基因进行了克隆测序,并对其在各组织及胚胎中的表达进行了初步研究。通过5和3 RACE克隆得到猪sall4基因cDNA全长序列(2 372 bp),序列分析证明此基因编码的蛋白结构更接近于小鼠和人Sall4B亚型,同源性可达70%~80%,而与其他物种的Sall4A相比则缺少一段含锌指结构域的片段,同源性降至30%~55%。Real-time PCR证明猪sall4b基因广泛表达于猪的各种器官,其中除卵巢组织呈高量表达之外,脾、肺、心和睾丸表达量也相对较高;在早期胚胎发育过程中除4-细胞阶段相对表达量较低,其他阶段呈高量表达。免疫荧光跟踪Sall4在猪早期胚胎中的表达情况发现Sall4在着床前胚胎中全程表达并定位于细胞核中,在囊胚阶段基因表达趋向于定位在内细胞团中。表达分析证明sall4b基因与多能性紧密相关,预示着猪sall4b基因将可能作为新的重编程因子用于诱导猪多能干细胞的体系中。  相似文献   

11.
12.
A restriction fragment length polymorphism was detected in pig DNA digested with Hind III restriction endo nuclease and probed with rabbit β1-globin gene. Eight different phenotypes were observed and for six of them family data demonstrated that they are determined by three alleles. As this polymorphism is not found with four other restriction endo nucleases (Bam HI, Eco RI, Kpn I, and Pst I), single point mutations are proposed to explain the observed differences.  相似文献   

13.
Gaucher disease is a common lysosomal storage disease caused by a defect of acid beta-glucosidase (GCase). The optimal in vitro hydrolase activity of GCase requires saposin C, an activator protein that derives from a precursor, prosaposin. To develop additional models of Gaucher disease and to test in vivo effects of saposin deficiencies, mice expressing low levels (4--45% of wild type) of prosaposin and saposins (PS-NA) were backcrossed into mice with specific point mutations (V394L/V394L or D409H/D409H) of GCase. The resultant mice were designated 4L/PS-NA and 9H/PS-NA, respectively. In contrast to PS-NA mice, the 4L/PS-NA and 9H/PS-NA mice displayed large numbers of engorged macrophages and nearly exclusive glucosylceramide (GC) accumulation in the liver, lung, spleen, thymus, and brain. Electron microscopy of the storage cells showed the characteristic tubular storage material of Gaucher cells. Compared with V394L/V394L mice, 4L/PS-NA mice that expressed 4--6% of wild-type prosaposin levels had approximately 25--75% decreases in GCase activity and protein in liver, spleen, and fibroblasts. These results imply that reduced saposin levels increased the instability of V394L or D409H GCases and that these additional decreases led to large accumulations of GC in all tissues. These models mimic a more severe Gaucher disease phenotype and could be useful for therapeutic intervention studies.  相似文献   

14.
15.
Salmonella enteritidis (SE) contamination of poultry products is a major cause of foodborne disease worldwide. Caspase-1 and inhibitor of apoptosis protein-1 (IAP-1) were selected as candidate genes for chicken response to SE because their proteins play critical roles in the apoptotic pathway when intracellular bacteria interact with host cells. Prosaposin (PSAP) was selected as a positional candidate gene based on a previous quantitative trait loci (QTL) linkage study using the same population. The F1 offspring of outbred sires crossed with three diverse, highly inbred dam lines (two major histocompatibility complex-congenic Leghorn lines named G-B1 and G-B2, and one Fayoumi line) were used to define the phenotypes. The F1 birds were involved in either pathogenic SE challenge, in which spleen and cecum content bacterial load were quantified, or SE vaccination, in which plasma antibody level to SE vaccine was evaluated. A polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) assay was developed to identify single-nucleotide polymorphism (SNP) in the three genes. The F1 offspring of heterozygous sires for each gene were genotyped. The sire caspase-1 gene was significantly associated with cecum content bacterial load (P = 0.04) in the three combined dam line crosses, and with spleen bacterial load in the G-B1 cross (P=0.02). The sire caspase-1 gene was also significantly associated with antibody level to SE vaccine (P=0.03) in F1 males in the three combined dam line crosses. The sire IAP-1 gene was significantly associated with spleen bacterial load (P=0.04) in the three combined dam-line crosses, and interacted with dam-line genetics (P = 0.01) for cecum content bacterial load. The sire PSAP gene significantly interacted with sex for spleen bacterial load (P = 0.004). This study is the first to demonstrate the association of SNPs for caspase-1, IAP-1, and PSAP genes with SE vaccine and with pathogen challenge response in chickens.  相似文献   

16.
Kinetic analysis of PFK-1 from rodent AS-30D, and human HeLa and MCF-7 carcinomas revealed sigmoidal [fructose 6-phosphate, Fru6P]-rate curves with different V(m) values when varying the allosteric activator fructose 2,6 bisphosphate (Fru2,6BP), AMP, Pi, NH(4)(+), or K(+). The rate equation that accurately predicted this behavior was the exclusive ligand binding concerted transition model together with non-essential hyperbolic activation. PFK-1 from rat liver and heart also exhibited the mixed cooperative-hyperbolic kinetic behavior regarding activators. Lowering pH induced decreased affinity for Fru6P, Fru2,6BP, citrate, and ATP (as inhibitor); as well as decreased V(m) and increased content of inactive (T) enzyme forms. High K(+) prompted increased (Fru6P) or decreased (activators) affinities; increased V(m); and increased content of active (R) enzyme forms. mRNA expression analysis and nucleotide sequencing showed that the three PFK-1 isoforms L, M, and C are transcribed in the three carcinomas. However, proteomic analysis indicated the predominant expression of L in liver, of M in heart and MCF-7 cells, of L>M in AS-30D cells, and of C in HeLa cells. PFK-1M showed the highest affinities for F6P and citrate and the lowest for ATP (substrate) and F2,6BP; PFK-1L showed the lowest affinity for F6P and the highest for F2,6BP; and PFK-1C exhibited the highest affinity for ATP (substrate) and the lowest for citrate. Thus, the present work documents the kinetic signature of each PFK-1 isoform, and facilitates the understanding of why this enzyme exerts significant or negligible glycolysis flux-control in normal or cancer cells, respectively, and how it regulates the onset of the Pasteur effect.  相似文献   

17.
18.
19.
20.
Polymorphonuclear leukocytes (PMNs) are major effector cells in the chronic airway inflammation in chronic obstructive pulmonary disease (COPD). PMN degranulation is associated with degradation of extracellular matrix and tissue damage. Hck is an essential molecule in the signaling pathway regulating PMN degranulation. We hypothesized that polymorphisms affect the expression level of Hck, which, in turn, modulates PMN mediator release and tissue damage and influences the development of COPD. Here we systematically investigated genetic tag polymorphisms of the Hck gene, Hck mRNA and protein expression pattern in PMNs, and PMN mediator release (myeloperoxidase) in 60 healthy white subjects, and assessed their association with the use of several genetic models. The association of genetic polymorphisms with COPD-related phenotypes was determined in the lung healthy study cohort (LHS). We identified a novel 15 bp insertion/deletion polymorphism (8,656 L/S) in intron 1 of the Hck gene, which was associated with differential expression of Hck protein and PMN myeloperoxidase release. In the LHS cohort, there was significant interaction between the 8,656 L/S polymorphism and smoking on baseline lung function and 8,656 L/S was associated with bronchodilator response. These data suggest that the insertion/deletion polymorphism could be a functional polymorphism of the Hck gene, may contribute to COPD pathogenesis and modify COPD-related phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号