首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A biological system, like any complex system, blends stochastic and deterministic features, displaying properties of both. In a certain sense, this blend is exactly what we perceive as the “essence of complexity” given we tend to consider as non-complex both an ideal gas (fully stochastic and understandable at the statistical level in the thermodynamic limit of a huge number of particles) and a frictionless pendulum (fully deterministic relative to its motion). In this commentary we make the statement that systems biology will have a relevant impact on nowadays biology if (and only if) will be able to capture the essential character of this blend that in our opinion is the generation of globally ordered collective modes supported by locally stochastic atomisms.  相似文献   

2.
Gene regulatory network (GRN) modelling has gained increasing attention in the past decade. Many computational modelling techniques have been proposed to facilitate the inference and analysis of GRN. However, there is often confusion about the aim of GRN modelling, and how a gene network model can be fully utilised as a tool for systems biology. The aim of the present article is to provide an overview of this rapidly expanding subject. In particular, we review some fundamental concepts of systems biology and discuss the role of network modelling in understanding complex biological systems. Several commonly used network modelling paradigms are surveyed with emphasis on their practical use in systems biology research.  相似文献   

3.
系统生物学对医学的影响   总被引:1,自引:0,他引:1  
系统生物学是21世纪最前沿的科学之一,它是随着生命科学飞速发展而产生的一门新兴生物学分支[1],它综合数学、信息科学和生物学的各种工具来阐明和理解大量的数据所包含的生物医学意义,从而使人们能够从整体上理解生物医学系统并精确、量化地预测生物医学系统的行为。随着系统生物学的发展及其理论的突破,将在疾病诊治、新药开发、预防医学方面发挥重要的作用,有助于弥补传统医学缺陷并促进其发展。  相似文献   

4.
系统生物学(Systems Biology)的几大重要问题   总被引:1,自引:0,他引:1  
陈铭 《生物信息学》2007,5(3):129-136
近几年来,系统生物学从正式提出到受到普遍关注和研究,对生物学的研究发展起了革命性的变化。主要从系统生物学的发展及其内容进行分析,讨论了生物数据整合,模型建立和模拟分析等几点关键性的问题,并展望了系统生物学的研究。  相似文献   

5.
    
Protein complexes carry out almost the entire signaling and functional processes in the cell. The protein complex complement of a cell, and its network of complex–complex interactions, is referred to here as the complexome. Computational methods to predict protein complexes from proteomics data, resulting in network representations of complexomes, have recently being developed. In addition, key advances have been made toward understanding the network and structural organization of complexomes. We review these bioinformatics advances, and their discovery‐potential, as well as the merits of integrating proteomics data with emerging methods in systems biology to study protein complex signaling. It is envisioned that improved integration of proteomics and systems biology, incorporating the dynamics of protein complexes in space and time, may lead to more predictive models of cell signaling networks for effective modulation.  相似文献   

6.
    
Taylor IW  Wrana JL 《Proteomics》2012,12(10):1706-1716
The physical interaction of proteins is subject to intense investigation that has revealed that proteins are assembled into large densely connected networks. In this review, we will examine how signaling pathways can be combined to form higher order protein interaction networks. By using network graph theory, these interaction networks can be further analyzed for global organization, which has revealed unique aspects of the relationships between protein networks and complex biological phenotypes. Moreover, several studies have shown that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer progression. These relationships suggest a novel paradigm for treatment of complex multigenic disease where the protein interaction network is the target of therapy more so than individual molecules within the network.  相似文献   

7.
    
Choi H 《Proteomics》2012,12(10):1663-1668
Protein complex identification is an important goal of protein-protein interaction analysis. To date, development of computational methods for detecting protein complexes has been largely motivated by genome-scale interaction data sets from high-throughput assays such as yeast two-hybrid or tandem affinity purification coupled with mass spectrometry (TAP-MS). However, due to the popularity of small to intermediate-scale affinity purification-mass spectrometry (AP-MS) experiments, protein complex detection is increasingly discussed in local network analysis. In such data sets, protein complexes cannot be detected using binary interaction data alone because the data contain interactions with tagged proteins only and, as a result, interactions between all other proteins remain unobserved, limiting the scope of existing algorithms. In this article, we provide a pragmatic review of network graph-based computational algorithms for protein complex analysis in global interactome data, without requiring any computational background. We discuss the practical gap in applying these algorithms to recently surging small to intermediate-scale AP-MS data sets, and review alternative clustering algorithms using quantitative proteomics data and their limitations.  相似文献   

8.
9.
Complex interactions between different kinds of bio-molecules and essential nutrients are responsible for cellular functions. Rapid advances in theoretical modeling and experimental analyses have shown that drastically different biological and non-biological networks share a common architecture. That is, the probability that a selected node in the network has exactly k edges decays as a power-law. This finding has definitely opened an intense research and debate on the origin and implications of this ubiquitous pattern. In this review, we describe the recent progress on the emergence of power-law distributions in cellular networks. We first show the internal characteristics of the observed complex networks uncovered using graph theory. We then briefly review some works that have significantly contributed to the theoretical analysis of cellular networks and systems, from metabolic and protein networks to gene expression profiles. This prevalent topology observed in so many diverse biological systems suggests the existence of generic laws and organizing principles behind the cellular networks.  相似文献   

10.
Apic G  Ignjatovic T  Boyer S  Russell RB 《FEBS letters》2005,579(8):1872-1877
Systems biology promises to impact significantly on the drug discovery process. One of its ultimate goals is to provide an understanding of the complete set of molecular mechanisms describing an organism. Although this goal is a long way off, many useful insights can already come from currently available information and technology. One of the biggest challenges in drug discovery today is the high attrition rate: many promising candidates prove ineffective or toxic owing to a poor understanding of the molecular mechanisms of biological systems they target. A "systems" approach can help identify pathways related to a disease and can suggest secondary effects of drugs that might cause these problems and thus ultimately improve the drug discovery pipeline.  相似文献   

11.
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.  相似文献   

12.
Novel omics technologies in nutrition research   总被引:1,自引:0,他引:1  
  相似文献   

13.
    
This report reviews the joint British Society for Proteome Research (BSPR) and European Bioinformatics Institute (EBI) 2007 meeting, 'Integrative Proteomics: From Molecules to Systems' which took place at the Wellcome Trust Conference Centre, Hinxton, UK, from 25th to 27th July. The aim of this year's meeting was to explore how the integration of 'omic' technologies can lead to a comprehensive understanding of cellular organization, differentiation and signalling. Studies investigating protein-protein interactions and trafficking illustrated how the combination of proteomics and bioinformatics is allowing systems biology to develop as a discipline in its own right.  相似文献   

14.
    
Modelling and simulation techniques are valuable tools for the understanding of complex biological systems. The design of a computer model necessarily has many diverse inputs, such as information on the model topology, reaction kinetics and experimental data, derived either from the literature, databases or direct experimental investigation. In this review, we describe different data resources, standards and modelling and simulation tools that are relevant to integrative systems biology.  相似文献   

15.
    
Identifying reproducible yet relevant protein features in proteomics data is a major challenge. Analysis at the level of protein complexes can resolve this issue and we have developed a suite of feature‐selection methods collectively referred to as Rank‐Based Network Analysis (RBNA). RBNAs differ in their individual statistical test setup but are similar in the sense that they deploy rank‐defined weights among proteins per sample. This procedure is known as gene fuzzy scoring. Currently, no RBNA exists for paired‐sample scenarios where both control and test tissues originate from the same source (e.g. same patient). It is expected that paired tests, when used appropriately, are more powerful than approaches intended for unpaired samples. We report that the class‐paired RBNA, PPFSNET, dominates in both simulated and real data scenarios. Moreover, for the first time, we explicitly incorporate batch‐effect resistance as an additional evaluation criterion for feature‐selection approaches. Batch effects are class irrelevant variations arising from different handlers or processing times, and can obfuscate analysis. We demonstrate that PPFSNET and an earlier RBNA, PFSNET, are particularly resistant against batch effects, and only select features strongly correlated with class but not batch.  相似文献   

16.
Systems biology aims to develop mathematical models of biological systems by integrating experimental and theoretical techniques. During the last decade, many systems biological approaches that base on genome-wide data have been developed to unravel the complexity of gene regulation. This review deals with the reconstruction of gene regulatory networks (GRNs) from experimental data through computational methods. Standard GRN inference methods primarily use gene expression data derived from microarrays. However, the incorporation of additional information from heterogeneous data sources, e.g. genome sequence and protein–DNA interaction data, clearly supports the network inference process. This review focuses on promising modelling approaches that use such diverse types of molecular biological information. In particular, approaches are discussed that enable the modelling of the dynamics of gene regulatory systems. The review provides an overview of common modelling schemes and learning algorithms and outlines current challenges in GRN modelling.  相似文献   

17.
    
The ability to read and quantify nucleic acids such as DNA and RNA using sequencing technologies has revolutionized our understanding of life. With the emergence of synthetic biology, these tools are now being put to work in new ways — enabling de novo biological design. Here, we show how sequencing is supporting the creation of a new wave of biological parts and systems, as well as providing the vast data sets needed for the machine learning of design rules for predictive bioengineering. However, we believe this is only the tip of the iceberg and end by providing an outlook on recent advances that will likely broaden the role of sequencing in synthetic biology and its deployment in real-world environments.  相似文献   

18.
19.
20.
Chanchal Kumar 《FEBS letters》2009,583(11):1703-1712
Proteomics has made tremendous progress, attaining throughput and comprehensiveness so far only seen in genomics technologies. The consequent avalanche of proteome level data poses great analytical challenges for downstream interpretation. We review bioinformatic analysis of qualitative and quantitative proteomic data, focusing on current and emerging paradigms employed for functional analysis, data mining and knowledge discovery from high resolution quantitative mass spectrometric data. Many bioinformatics tools developed for microarrays can be reused in proteomics, however, the uniquely quantitative nature of proteomics data also offers entirely novel analysis possibilities, which directly suggest and illuminate biological mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号