首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boar sperm acrosin is an acrosomal protease with trypsin-like specificity, and it functions in fertilization by assisting sperm passage through the zona pellucida by limited hydrolysis of this extracellular matrix. In addition to a proteolytic active site domain, acrosin binds the zona pellucida at a separate binding domain that is lost during proacrosin autolysis. In this study, we quantitate the binding of proacrosin to the physiological substrate for acrosin, the zona pellucida, and to a non-substrate, the polysulfated polysaccharide fucoidan. Binding was analogous to sea urchin sperm bindin that binds egg jelly fucan and the vitelline envelope of sea urchin eggs. Proacrosin was found to bind to fucoidan and to the zona pellucida with binding affinities similar to bindin interaction with egg jelly fucan. These interactions were competitively inhibited by similar relative molecular mass polysulfated polymers. Since bindin and proacrosin have distinctly different amino acid sequences, their interaction with acidic sulfate esters demonstrates an example of convergent evolution wherein different macromolecules localized in analogous sperm compartments have the same biological function. From cDNA sequence analysis of proacrosin, this binding may be mediated through a consensus sequence for binding sulfated glycoconjugates. Proacrosin binding to the zona pellucida may serve as both a recognition or primary sperm receptor, as well as maintaining the sperm on the zona pellucida once the acrosome reaction has occurred.  相似文献   

2.
Proacrosin is the zymogen of acrosin, a serine protease localized in the acrosomal matrix of mammalian sperm. Proacrosin/acrosin binds to solubilized zona pellucida glycoproteins (ZPGs) and various polysulfates in a non-enzymatic mechanism. In addition, both polysulfates and ZPGs induce proacrosin activation once they bind to the polysulfate-binding domain (PSBD) of the enzyme. We show here that the peptide (43)IFMYHNNRRYHTCGGILL(60) inhibited the proacrosin activation induced by either fucoidan or ZPGs. In addition, the peptide was recognized by the monoclonal antibody C5F10, which is directed against the PSBD region. Our data suggest that the PSBD is composed of many "subsites" that may or may not interact with each other.  相似文献   

3.
The interaction between acrosome-reacted sperm and zona pellucida proteins is not yet fully understood. Serine protease acrosin and its zymogen proacrosin have been proposed to fulfill this function due to their capacity to bind zona pellucida glycoproteins. However, the molecular mechanism underlying this interaction has been merely speculative. Here we show that fucoidan (a sulfated polysaccharide) and solubilized zona pellucida glycoproteins, but not soybean trypsin inhibitor, are able to detach bound spermatozoa, which suggests that live sperm binds to the zona pellucida in a non-enzymatical way. Interestingly, mild proteolytic digestion with acrosin or trypsin does not modify the structure of the zona pellucida, but rather results in fewer spermatozoa binding to the zona. These results agree with a model where the active site of acrosin digests the zona pellucida and binds through the polysulfate-binding domain through a three-dimensional zona structure rather than a single ligand.  相似文献   

4.
Boar proacrosin (E.C. 3.4.21.10, Mw 53 kD) was isolated by a modified method and subjected to autoactivation. Previously described molecular intermediates of 49 and 43 kD and a stable form (beta-acrosin, 35 kD) were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoactivation was expedited in the presence of either zona pellucida glycoproteins, fucoidan, or DNA. The end point of this accelerated conversion was the complete degradation of otherwise stable beta-acrosin via the formation of a characteristic active intermediate protein of 30 kD. All intermediate molecular forms observed during proacrosin activation/conversion exhibited the N-terminal sequence of the boar acrosin heavy chain, indicating a C-terminal processing mechanism. Hence zona pellucida glycoproteins stimulate proacrosin activation as well as acrosin degradation. Such a mechanism of proenzyme activation and degradation is to our knowledge described here for the first time and points to a previously unrecognized role of zona pellucida during gamete interaction.  相似文献   

5.
Mammalian eggs are surrounded by two egg coats: the cumulus oophorus and the zona pellucida, which is an extracellular matrix composed of sulfated glycoproteins. The first association of the spermatozoon with the zona pellucida occurs between the zona glycoprotein, ZP3 and sperm receptors, located at the sperm plasma membrane, such as the 95kDa tyrosine kinase-protein. This association induces the acrosome reaction and exposes the proacrosin/acrosin system. Proacrosin transforms itself, by autoactivation, into the proteolytical active form: acrosin. This is a serine protease that has been shown to be involved in secondary binding of spermatozoa to the zona pellucida and in the penetration of mammalian spermatozoa through it. The zona pellucida is a specific and natural substrate for acrosin and its hydrolysis and fertilization can be inhibited by antiacrosin monoclonal antibodies. Moreover, inin vitrofertilization experiments, trypsin inhibitors significantly inhibits fertilization. The use of the silver-enhanced immunogold technique has allowed immunolocalization of the proacrosin/acrosin system in spermatozoa after the occurrence of the acrosome reaction. This system remains associated to the surface of the inner acrosomal membrane for several hours in human, rabbit and guinea-pig spermatozoa while in the hamster it is rapidly lost. In the hamster, the loss of acrosin parallels the capability of the sperm to cross the zona pellucida. Rabbit perivitelline spermatozoa can fertilize freshly ovulated rabbit eggs and retain acrosin in the equatorial and postacrosomal region. These spermatozoa also show digestion halos on gelatin plates that can be inhibited by trypsin inhibitors. This evidence strongly suggests the involvement of acrosin in sperm penetration through the mammalian zona. Recently it was shown, however, that acrosin would not be essential for fertilization. It is likely, then, that such an important phenomenon in the mammalian reproductive cycle would be ensured though several alternative mechanisms.  相似文献   

6.
The initial stages of fertilization in vertebrates and invertebrates are thought to involve complementary recognition molecules on spermatozoa and eggs. In a previous work (C. R. Brown and R. Jones, 1987, Development) we described one such putative molecule (a protein of approximate molecular weight 53 kDa) in detergent extracts of boar spermatozoa that has affinity for glycoproteins from the zona pellucida of pig eggs. This molecule has now been identified as proacrosin, the zymogen form of the acrosomal protease acrosin, on the basis of its electrophoretic behavior, the ability of zona glycoproteins to recognize and bind to proacrosin on Western blots, and the cross-reactivity of specific antisera to the 53-kDa molecule and proacrosin. A role is proposed for this enzyme in binding the sperm head to the zona pellucida during the initial stages of sperm-egg interaction.  相似文献   

7.
Carbohydrate-protein interactions are known to be important in gamete interactions. We therefore investigated the inhibition of boar sperm acrosin amidase activity by carbohydrates. The sulfated polysaccharides fucoidan and dextran sulfate inhibited amide hydrolysis whereas dextran and various monosaccharides did not inhibit acrosin amidase activity. The kinetics of the inhibition corresponded to those characteristic when multiple forms of an enzyme are present. Such a kinetic result was consistent with the presence of the known autolytically produced forms of acrosin. It was previously shown that sulfated polysaccharides inhibit sperm-egg binding and that acrosin binds carbohydrate. We propose that the sulfated polysaccharide inhibition of acrosin amidase activity observed here is causally related to the previously observed sulfated polysaccharide inhibition of sperm binding to the zona pellucida.  相似文献   

8.
Mammalian sperm acrosomes contain a trypsin-like protease called acrosin which causes limited and specific hydrolysis of the extracellular matrix of the mammalian egg, the zona pellucida. Acrosin was localized on hamster, guinea-pig and human sperm using monoclonal and polyclonal antibodies to human acrosin labelled with colloidal gold. This was visualized directly with transmission electron microscopy, and with light and scanning microscopy after silver enhancement of the colloidal gold probe. Four distinct labelling patterns were found during capacitation and the acrosome reaction in hamster and guinea-pig spermatozoa, and three patterns were found in human spermatozoa. In the hamster, acrosin was not detected on the inner acrosomal surface after the completion of the acrosome reaction, thus correlating with the observation that hamster spermatozoa lose the ability to penetrate the zona after the acrosome reaction. With guinea-pig and human spermatozoa, acrosin was still detected after the completion of the acrosome reaction, thus correlating with the observation that acrosome reacted guinea-pig spermatozoa bind to and penetrate the zona pellucida.  相似文献   

9.
In this study, we investigated the functions of PH‐20 and acrosin during the interaction of macaque sperm with the zona pellucida. Both of these sperm enzymes have been reported to be present on the inner acrosomal membrane of acrosome reacted sperm, and have been suggested to play a role during secondary sperm‐zona binding in other species. Anti‐macaque PH‐20 IgG, anti‐pig acrosin IgG and soybean trypsin inhibitor (SBTI) were used as probes for immunolocalization of the two proteins at the ultrastructural level, and as reagents for blocking sperm penetration of the macaque zona pellucida in vitro. As a control, we performed similar studies with antibodies to CD‐46, which is also located on the inner acrosomal membrane, but has no known function in sperm‐zona pellucida interaction. After labeling with anti‐acrosin IgG, gold label was not present on the sperm surface before the acrosome reaction, but was detected over the entire head of sperm that were induced to acrosome react with calcium ionophore A23187. In contrast, when sperm were induced to acrosome react by binding to intact zona pellucida, acrosin was present in the acrosomal shroud but not on the inner acrosomal membrane. Similar results were obtained when SBTI was used as a probe for enzyme localization. PH‐20 and CD‐46 were demonstrated on the inner acrosomal membrane of sperm induced to acrosome react by ionophore treatment and by zona binding. Neither anti‐acrosin IgG nor anti‐CD‐46 IgG affected sperm penetration of the zona at concentrations up to 300 μg/ml, but zona penetration was blocked completely when anti‐PH‐20 IgG (100 μg/ml) was present during sperm‐oocyte interaction. Ultrastructural observations of oocytes incubated with anti‐PH‐20 IgG showed that acrosomal shrouds were present on the zona surface but no sperm had begun to penetrate into the zona substance. We conclude that anti‐PH‐20 IgG prevented sperm penetration of the macaque zona pellucida by interference with secondary sperm‐zona binding, rather than primary sperm‐zona binding or the zona‐induced acrosome reaction. Acrosin was not detected on the inner acrosomal membrane of sperm that are induced to acrosome react after zona binding, and acrosin does not appear to be critical for sperm penetration of the macaque zona pellucida. Mol. Reprod. Dev. 53:350–362, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
To better understand the loss of the acrosomal cap on the surface of the zona pellucida and the function of the equatorial-postacrosomal region after the acrosome reaction, we have constructed an in vitro system using heat-solubilized zonae pellucidae dried onto a coverslip and incubated with capacitated spermatozoa. This system allows good optical resolution of spermatozoonzona interaction. Induction of the acrosome reaction by zonae on coverslips (30%) is comparable to the induction of the reaction reported previously for rabbit spermatozoa using solubilized zonae in solution. Antiserum to rabbit proacrosin, antiserum to a porcine 49-kDa proacrosin fragment, and antiserum to a porcine 14-kDa C-terminal acrosin fragment were utilized to monitor the acrosome reaction. Rabbit proacrosin/acrosin is not present on the surface of live, acrosome-intact, swimming spermatozoa. After contact with zona, the acrosome reaction begins and proacrosin/acrosin becomes available to bind antibody, first as a crescent in the apical region and then more posteriorly until the entire anterior acrosome is labeled. Proacrosin/acrosin remains on the equatorial and postacrosomal regions of acrosome-reacted spermatozoa and also remains associated with the acrosomal cap even after the spermatozoon is no longer associated with it. Further studies using zona-coated coverslips should lead to a more detailed understanding of the mechanism of zona penetration.  相似文献   

11.
Washed ejaculated boar sperm and sperm from the cauda epididymis bind to the zona pellucida of fixed porcine eggs in large numbers. Sperm incubated in the presence of dextran sulfate (8 K daltons or 500 K daltons) or fucoidan and then washed no longer bind to eggs. Other acid carbohydrates (heparin, chondroitin sulfates, inositol hexasulfate, carboxymethylcellulose) fail to block sperm-egg binding even when added directly to sperm-egg suspensions. Seminal plasma and the seminal vesicle secretion contain basic proteins which bind tightly to sperm and bind reversibly to eggs preventing sperm from binding to eggs. When dextran sulfate or fucoidan are mixed with the vesicular secretion, from which seminal plasma basic proteins originate (Hunt et al., '83), the secretion loses the capacity to prevent sperm from binding to eggs; this suggests that seminal vesicle proteins can bind to the same site on zonae as do sperm and thus seminal plasma may modify sperm-egg interactions. Corpus and cauda epididymal sperm also bind in large numbers to the zona pellucida of isolated eggs but high concentrations of caput sperm, which exhibit high motility in the presence of caffeine, bind only in few numbers. Thus a component that enhances sperm-zona binding is apparently formed on the plasma membranes of uncapacitated sperm during passage through the epididymis. This finding, and an earlier observation that antibodies raised against uncapacitated sperm plasma membranes block sperm-egg binding in vivo (Peterson et al., '83) suggest that this component may be involved in sperm zona interaction in vivo.  相似文献   

12.
Monoclonal antibodies to human acrosin were required for studies of immunological interference with fertilization. Since human acrosin was not available in adequate amounts, monoclonal antibodies have been raised in mice against purified bovine acrosin and screened for cross-reaction with human sperm cells. Two of these antibodies are described, B4F6 and C2E5. Data from enzyme-linked immunosorbent assays, immunoblots, immunoprecipitation, and indirect immunofluorescence on sperm cells indicate that B4F6 binds only to bovine acrosin, and that C2E5 binds both to bovine and to human acrosin at a conformationally determined epitope. The antibodies do not inhibit the hydrolysis of benzoylarginine ethyl ester by acrosin, but C2E5 did inhibit the dissolution of the hamster zona pellucida by purified human acrosin. The antibodies have also been used for affinity purification of acrosin and proacrosin.  相似文献   

13.
Proacrosin and acrosin were localized immunocytochemically at the electron microscope level in ram spermatozoa undergoing an ionophore-induced acrosome reaction. Antigenicity was preserved after fixation with 0.5% w/v ethyl-(dimethylaminopropyl)-carbodimide, and an antibody preparation was used that reacted with all major forms of ram acrosin. All stages of the acrosome reaction could be observed in a single preparation. At the earliest stage, labeling was observed throughout the acrosomal contents, which were just beginning to disperse. As dispersal proceeded, labeling diminished, being associated only with visible remnants of the acrosomal matrix. By the time the acrosome had emptied, almost no labeling could be detected on the inner acrosomal membrane. The relationship between matrix dispersal and proacrosin activation was studied in isolated ram sperm heads. While proacrosin was prevented from activating, the acrosomal matrix remained compact; but as activation proceeded, the matrix decondensed and dispersed in close parallel. By the time proacrosin activation was complete, the acrosomal contents had almost entirely disappeared. We conclude that proacrosin is distributed throughout the acrosomal contents as an intrinsic constituent of the acrosomal matrix. During the acrosome reaction, proacrosin activation occurs, resulting directly in decondensation of the matrix. All the contents of the acrosome including acrosin disperse and, by the time the acrosome is empty and the acrosomal cap is lost, only occasional traces of acrosin remain on the inner acrosomal membrane. Since the acrosomal cap is normally lost during the earliest stages of zona penetration, acrosin's role in fertilization is unclear: it does not appear to be a zona lysin bound to the inner acrosomal membrane.  相似文献   

14.
During the first steps of the gamete interaction, the proacrosin/acrosin system seems to play a crucial role in the secondary binding, holding acrosome-reacted spermatozoa during their passage through the zona pellucida. To analyze the functional domains of acrosin, we decided to express recombinant boar acrosin proteins in bacteria and to study their binding capacities to zona pellucida glycoproteins (ZPGPs). The expressed proteins were immunodetected by Western blot with a polyclonal antiacrosin antibody. The recombinant truncated β-acrosin has a typical hyperbolic curve of a zymogen enzymatic activation. Three of the five recombinant forms (truncated β-acrosin, Ser/Ala222-truncated β-acrosin, and truncated β-acrosin “heavy chain”) had the ability to bind ZPGPs. The two shorter forms (the amino and carboxy termini of truncated β-acrosin) failed to bind. The catalytic site mutant (Ser/Ala222) of truncated β-acrosin does not differ from the recombinant truncated β-acrosin in its mechanism of interaction to ZPGPs, indicating that this secondary binding is done by a nonenzymatic process. Our results show that binding between acrosin and ZPGPs depends on the secondary and tertiary structures of acrosin and does not depend on an active catalytic site. Mol. Reprod. Dev. 49:426–434, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
At fertilization, spermatozoa bind to the zona pellucida (ZP1, ZP2, ZP3) surrounding ovulated mouse eggs, undergo acrosome exocytosis and penetrate the zona matrix before gamete fusion. Following fertilization, ZP2 is proteolytically cleaved and sperm no longer bind to embryos. We assessed Acr3-EGFP sperm binding to wild-type and huZP2 rescue eggs in which human ZP2 replaces mouse ZP2 but remains uncleaved after fertilization. The observed de novo binding of Acr3-EGFP sperm to embryos derived from huZP2 rescue mice supports a ;zona scaffold' model of sperm-egg recognition in which intact ZP2 dictates a three-dimensional structure supportive of sperm binding, independent of fertilization and cortical granule exocytosis. Surprisingly, the acrosomes of the bound sperm remain intact for at least 24 hours in the presence of uncleaved human ZP2 regardless of whether sperm are added before or after fertilization. The persistence of intact acrosomes indicates that sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis. A filter penetration assay suggests an alternative mechanism in which penetration into the zona matrix initiates a mechanosensory signal transduction necessary to trigger the acrosome reaction.  相似文献   

16.
Limited and specific proteolysis of the zona pellucida by acrosin   总被引:1,自引:0,他引:1  
The proteolytic action of boar sperm acrosin on its natural substrate, the zona pellucida, was investigated. Acrosin exhibited substrate specificity for the zona pellucida and differentially hydrolyzed the glycoprotein families composing the zona pellucida. In contrast to acrosin, trypsin was a less-specific protease in terms of zona pellucida hydrolysis.  相似文献   

17.
beta-1,4-Galactosyltransferase (GalTase) is present on the surface of mouse sperm, where it functions during fertilization by binding to oligosaccharide residues in the egg zona pellucida. The specific oligosaccharide substrates for sperm GalTase reside on the glycoprotein ZP3, which possesses both sperm-binding and acrosome reaction-inducing activity. A variety of reagents that perturb sperm GalTase activity inhibit sperm binding to the zona pellucida, including UDP-galactose, N-acetylglucosamine, alpha-lactalbumin, and anti-GalTase Fab fragments. However, none of these reagents are able to cross-link GalTase within the membrane nor are they able to induce the acrosome reaction. On the other hand, intact anti-GalTase IgG blocks sperm-zona binding as well as induces the acrosome reaction. Anti-GalTase IgG induces the acrosome reaction by aggregating GalTase on the sperm plasma membrane, as shown by the inability of anti-Gal-Tase Fab fragments to induce the acrosome reaction unless cross-linked with goat anti-rabbit IgG. These data suggest that zona pellucida oligosaccharides induce the acrosome reaction by clustering GalTase on the sperm surface.  相似文献   

18.
Gossypol, a known antispermatogenic agent, was found to effectively inhibit the highly purified boar sperm proacrosin-acrosin proteinase enzyme system by irreversibly preventing the autoproteolytic conversion of proacrosin to acrosin and reversibly inhibiting acrosin activity. The agent appears to prevent the self-catalyzed by not the acrosin-catalyzed activation of proacrosin. In additional experiments, brief exposure of human semen to concentrations of gossypol, which did not visibly alter spermatozoal motility or forward progression, was found to irreversibly inhibit the conversion of proacrosin to acrosin although the activity of the nonzymogen acrosin was not decreased, and also to prevent the human spermatozoa from penetrating denuded hamster oocytes. Gossypol inhibition of proacrosin conversion to acrosin closely paralleled the decline in oocyte penetration. Racemic (+/-) gossypol was equally as effective as the enantiomer (+) gossypol. The results suggest that the inhibition of proacrosin conversion to acrosin is a mechanism by which gossypol exerts its antifertility effect at nonspermicidal concentrations and that low levels of gossypol should be tested for their contraceptive action when placed vaginally.  相似文献   

19.
Mammalian sperm must be acrosome reacted before penetrating the zona pellucida. In some species the sperm undergo the acrosome reaction before binding to the zona pellucida and in other species only acrosome intact sperm can initiate binding to the zona. In this study we addressed the question of acrosomal status and sperm-zona binding with human gametes. Sperm acrosome reactions were induced by treatment with human follicular fluid or N-(6-amino-hexyl)-5-chloro-naphthalene sulfonamide (W-7). The sperm suspensions, containing various percentages of acrosome-reacted sperm, were then incubated with human oocytes for 1 min. The acrosomal status of the sperm population bound to the zona was similar to the acrosomal status of the population of sperm in suspension (R2 = 0.77), regardless of the treatment to induce acrosome reactions. Our interpretation of these results is that both acrosome intact and acrosome-reacted human sperm can initiate binding to the zona pellucida. However, we reported earlier (N. L. Cross, P. Morales, J. W. Overstreet, and F. W. Hanson, 1988, Biol. Reprod. 38, 235-244) that the human zona pellucida is able to induce acrosome reactions. Thus, to exclude the possibility that sperm had undergone the acrosome reaction on the zona within 1 min of binding, sperm were suspended in a nominally calcium-free Tyrode's medium (0 Ca-mTyr) before incubation with oocytes (this medium was supplemented with SrCl2 and spermine to support sperm motility and zona binding). In 0 Ca-mTyr, the proportion of acrosome-reacted sperm on the zona was still highly correlated with the proportion of reacted sperm in suspension, indicating that the sperm were reacted before binding. Evidence that 0 Ca-mTyr effectively inhibited acrosome reactions induced by the zona pellucida was derived from experiments in which sperm were treated with human follicular fluid or control medium and the suspensions were diluted with either 0 Ca-mTyr or control medium.4+ Human oocytes were added for 1 min (pulse) at which time some oocytes were fixed and other oocytes were transferred to sperm-free medium and incubated for 35 min (chase) before fixation. Sperm diluted in control medium, pretreated with either human follicular fluid or control medium, showed a similar increase (40%) in the percentage of acrosome reactions among the zona-bound sperm after the chase. Sperm diluted in 0 Ca-mTyr did not show an increase in the percentage of acrosome-reacted sperm on the zona pellucida after the chase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The participation of acrosin in mammalian sperm penetration through the zona pellucida has been amply debated. In this paper we report the immunolocalization—by silver enhanced immunogold technique using ACRO-8C10 monoclonal antibody to human acrosin—of proacrosin/acrosin on ejaculated rabbit spermatozoa incubated in vitro in a capacitating medium and on spermatozoa recovered from the perivitelline space. After incubation in a capacitating medium, four different patterns were observed: (1) no labeling on acrosome intact spermatozoa; (2) labeling on the rim of the head; (3) labeling on the whole acrosome area; and (4) no labeling on acrosome reacted spermatozoa. At the start of incubation, spermatozoa with pattern 1 were the most abundant, whereas at the end of the 32 h incubation period, patterns 2 and 3 were the most frequent. On the other hand, 625 perivitelline spermatozoa were recovered from 17 fertilized rabbit eggs, of which 26% were labeled with the anti-acrosin monoclonal antibody ACRO-8C10 in two different areas: (1) only on the equatorial region; and (2) only on the postacrosomal area. These results are consistent with the idea that proacrosin/acrosin remains associated to the acrosome reacted spermatozoa for long periods of time, and that proacrosin/acrosin associated to perivitelline spermatozoa could be responsible for the second penetration of fresh rabbit eggs by perivitelline spermatozoa. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号