首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
High glucose-induced apoptosis in vascular endothelial cells may contribute to the acceleration of atherosclerosis associated with diabetes. Here, we show that erythropoietin attenuates high glucose-induced apoptosis in cultured human aortic endothelial cells (HAECs). Exposure of HAECs to high glucose level for 72h significantly increased the number of apoptotic cells compared with normal glucose level, as evaluated by TUNEL assay. Simultaneous addition of erythropoietin (100 U/ml) significantly attenuated high glucose-induced apoptosis. In parallel, exposure to high glucose level induced caspase-3 activation and erythropoietin also prevented it. Erythropoietin stimulated Akt phosphorylation in a dose-dependent manner (1-100 U/ml). PI3 kinase inhibitor, wortmannin or LY294002 eliminated erythropoietin's inhibitory effect on caspase-3 activity. In conclusion, erythropoietin may attenuate high glucose-induced endothelial cell apoptosis via PI-3 kinase pathway. Replacing therapy with erythropoietin is often used for correction of renal anemia, but may have potential in preventing atherosclerosis in diabetic patients with end-stage renal failure.  相似文献   

3.
Endothelial dysfunction caused by cell apoptosis is thought to be a major cause of diabetic vascular complications. Advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic vascular complications by inducing apoptosis of endothelial cells. The aim of this study was to explore the effect of ghrelin on AGEs‐induced apoptosis in cultured human umbilical vein endothelial cells (HUVECs) and the potential mechanisms involved in this process. Exposure to AGEs (200 mg l?1) for 48 h caused a significant increase in cell apoptosis, while pretreatment with ghrelin eliminated AGEs‐induced apoptosis in HUVECs, as evaluated by MTT assays, flow cytometry and Hoechst 33258 staining. The induction of caspase‐3 activation was also prevented by ghrelin in cells incubated with AGEs. Exposure to ghrelin (10?6 M) resulted in a rapid activation of extracellular signal‐regulated protein kinase (ERK)1/2 and Akt. The inhibitory effect of ghrelin on caspase‐3 activity was attenuated by inhibitors of ERK1/2 (PD98059), PI3K/Akt (LY294002) and growth hormone secretagogue receptor (GHSR)‐1a (D ‐Lys3‐growth hormone releasing peptide‐6). The results of this study indicated that ghrelin could inhibit AGEs‐mediated cell apoptosis via the ERK1/2 and PI3K/Akt pathways and GHSR‐1a was also involved in the protective action of ghrelin in HUVECs. As such, ghrelin demonstrates significant potential for preventing diabetic cardiovascular complications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Ghrelin exhibits its biological effect through binding to the growth hormone secretagogue 1a receptor (GHS-R1a). Recently, it has been reported that ghrelin has an anti-apoptotic effect in several cell types. However, the molecule mechanisms underlying the anti-apoptotic effect of ghrelin remain poorly understood. In this study, we investigated the intracellular mechanisms responsible for anti-apoptotic effect of ghrelin on human umbilical vein endothelial cells (HUVEC). Treatment of HUVEC with ghrelin inhibited high glucose-induced cell apoptosis. Ghrelin stimulated the rapid phosphorylation of mammalian target of rapamycin (mTOR), P70S6K and S6. The GHS-R1a-specific antagonist [D-Lys3]-GHRP-6 abolished the anti-apoptotic effect and inhibited the activation of mTOR, P70S6K, S6 induced by ghrelin. Pretreatment of cells with specific inhibitor of mTOR blocked the anti-apoptotic effect of ghrelin. In addition, ghrelin protected HUVECs against high glucose induced apoptosis by increasing Bcl-2/Bax ratio. Taken together, our results demonstrate that ghrelin produces a protective effect on HUVECs through activating GHS-R1a and mTOR/P70S6K signaling pathway mediates the effect of ghrelin. These observations suggest that ghrelin may act as a survival factor in preventing HUVECs apoptosis caused by high glucose.  相似文献   

5.
Recent studies implicate hyperglycemia as a cause of vascular complications in diabetes. Our study confirmed that high concentration of glucose (30 mM) induces apoptosis in cultures of human umbilical vein endothelial cells. After 5 days of culture TUNEL positive cells in high concentration of glucose were nearly 63% higher when compared to normal concentration of glucose (5 mM). Transfection of pcDNA3-rat alphaB-crystallin into these cells inhibited high glucose-induced apoptosis by approximately 36%, such an effect was not observed when cells were transfected with an empty vector. AlphaB-crystallin transfection inhibited by about 35% of high glucose induced activation of caspase-3. High concentration of glucose enhanced formation of reactive oxygen species (ROS) in these cells but this was significantly (p < 0.001) curtailed by transfection of alphaB-crystallin. Results of our study indicate that alphaB-crystallin effectively inhibits both ROS formation and apoptosis in cultured vascular endothelial cells and provide a basis for future therapeutic interventions in diabetic vascular complications.  相似文献   

6.
High glucose plays a vital role in apoptosis in H9C2 cells. However, the exact molecular mechanism remains unclear. In this study, we aimed to evaluate the cardio-protective role of A2b receptor in high glucose-induced cardiomyocyte apoptosis via PI3K/Akt pathway. Adenosine A2b receptor agonist (Bay506583), antagonist (MRS1754), and Akt inhibitor (LY294002) were applied respectively to H9C2 cells before exposed to high glucose for 12 h. Apoptosis of H9C2 cells was determined by TUNEL assay and the apoptosis rate by flow cytometry. The protein level of adenosine A2b receptor, p-Akt, total Akt, cleaved capase-3, cleaved capase-9, bax, and bcl-2 was measured by western blotting. The results demonstrated that apoptosis of H9C2 cardiomyocytes triggered by high-glucose treatment was time-dependent. The protein level of A2b receptor and activated Akt was both decreased in cardiomyocyte with high-glucose treatment. Moreover, we found that high glucose-induced apoptosis in H9C2 cells could be attenuated by administration of adenosine A2b receptor agonist Bay606583. This effect could be reversed by Akt inhibitor LY294002. In conclusion, activation of A2b receptor could prevent high glucose-induced apoptosis of H9C2 cells in vitro to a certain extent by activating PI3K/Akt signaling. In conclusion, these results suggested that activation of A2b receptor could be a novel therapeutic approach to high glucose-induced cardiomyocyte injury.  相似文献   

7.
Hyperglycemia, a symptom of diabetes mellitus, induces hyperosmotic responses, including apoptosis, in vascular endothelial cells and leukocytes. Hyperosmotic shock elicits a stress response in mammalian cells, often leading to apoptotic cell death. In a previous report, we showed that hyperosmotic shock induced apoptosis in various mammalian cells. Importantly, apoptotic biochemical changes (i.e., caspase-3 activation and DNA fragmentation) were blocked by antioxidant pretreatment during hyperosmotic shock-induced cell death. In the present study, we report that resveratrol, a phytoalexin present in grapes with known antioxidant and anti-inflammatory properties, attenuates high glucose-induced apoptotic changes, including c-Jun N-terminal kinase (JNK) activation and caspase-3 activation in human leukemia K562 cells. Experiments with the cell permeable dye, 2',7'-dichlorofluorescein diacetate (DCF-DA), an indicator of reactive oxygen species (ROS) generation, revealed that high glucose treatment directly increased intracellular oxidative stress, which was attenuated by resveratrol. In addition, high glucose-treated K562 cells displayed a lower degree of attachment to collagen, the major component of vessel wall subendothelium. In contrast, cells pretreated with resveratrol followed by high glucose exhibited higher affinity for collagen. The results of this report collectively imply the involvement of oxidative stress in high glucose-induced apoptosis and alterations in attachment ability. Moreover, resveratrol blocks these events by virtue of its antioxidant property.  相似文献   

8.
Growth differentiation factor 15 (GDF15), a direct target gene of p53, is a multifunctional member of the TGF-β/BMP superfamily. GDF15 can be induced and is implicated as a key secretory cytokine in response to multiple cellular stimuli. Accumulating evidence indicates that GDF15 is associated with the development and prognosis of diabetes mellitus, while whether GDF15 can be induced by high glucose is unknown. In the present study, we revealed that high glucose could induce GDF15 expression and secretion in cultured human umbilical vein endothelial cells in a ROS- and p53-dependent manner. Inhibition of high glucose-induced GDF15 expression by siRNA demonstrated that adaptively induced GDF15 played a protective role against high glucose-induced human umbilical vein endothelial cell apoptosis via maintaining the active state of PI3K/Akt/eNOS pathway and attenuating NF-κB/JNK pathway activation. The protective effects of GDF15 were probably achieved by inhibiting ROS overproduction in high glucose-treated human umbilical vein endothelial cells in a negative feedback manner. Our results suggest that high glucose can promote GDF15 expression and secretion in human umbilical vein endothelial cells, which in turn attenuates high glucose-induced endothelial cell apoptosis.  相似文献   

9.
This study examined the effects of high glucose on cell proliferation and its related signal pathways using mouse embryonic stem (ES) cells. Here, we showed that high glucose level significantly increased [3H]thymidine incorporation, BrdU incorporation, the number of cells, [3H]leucine, and [3H]proline incorporation in a time-( >3 hr) and dose-(> 25 mM) dependent manner. Moreover, high glucose level increased the cellular reactive oxygen species (ROS), Akt, and mitogen-activated protein kinases (MAPKs) phosphorylation. Subsequently, these signaling molecules involved in high glucose-induced increase of [3H]thymidine incorporation. High glucose level also increased cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4 protein levels, which is cell cycle regulatory proteins acting in G1-S phase of cell cycle. Inhibition of phosphatidylinositol 3-kinase (PI3-K) (LY 294002: PI3-kinase inhibitor, 10(-6) M), Akt (Akt inhibitor, 10(-5) M), and p44/42 MAPKs (PD 98059: MEK inhibitor, 10(-5) M) decreased these proteins. High glucose level phosphorylated the RB protein, which was decreased by inhibition of PI3-K and Akt. In conclusion, high glucose level stimulates mouse ES cell proliferation via the PI3-K/Akt and MAPKs pathways.  相似文献   

10.
Zhu  Xiaojuan  Liu  Shichao  Cao  Zhijiao  Yang  Lei  Lu  Fang  Li  Yulan  Hu  Lili  Bai  Xiaoliang 《Molecular and cellular biochemistry》2021,476(11):3889-3897

Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. Higenamine exerts multiple pharmacological properties in inflammation-related disorders. Our study aimed to explore the function of higenamine on interleukin (IL)-1β-caused apoptosis of human nucleus pulposus cells (HNPCs). Cell apoptosis was investigated by TUNEL and flow cytometry. Apoptosis-related biomarkers were determined by qRT-PCR or Western blotting. The protein in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling was measured by Western blotting. We found that higenamine showed little effect on cell apoptosis, but mitigated IL-1β-caused apoptosis in a dose-dependent pattern. Higenamine attenuated IL-1β-induced decrease of Bcl-2 and increase of Bax and cleaved caspase-3. Higenamine did not affect the reactive oxygen species (ROS) level and the PI3K/Akt signaling, but attenuated IL-1β-induced ROS production and inhibition of the PI3K/Akt signaling. IL-1β repressed the activation of the PI3K/Akt pathway, but ROS inhibition using N-acetylcysteine (NAC) rescued this pathway. The PI3K/Akt signaling suppression using LY294002 reversed the inhibitive effect of higenamine on IL-1β-caused apoptosis, and this effect was weakened by ROS inhibition. In conclusion, higenamine attenuates IL-1β-caused apoptosis of HNPCs via ROS-mediated PI3K/Akt pathway.

  相似文献   

11.
Hyperglycemia is the hallmark of diabetes mellitus. Poor glycemic control is correlated with increased cardiovascular morbidity and mortality. High glucose can trigger endothelial cell apoptosis by de-activation of endothelial nitric oxide synthase (eNOS). eNOS was recently demonstrated to be extensively regulated by Akt and heat shock protein 90 (HSP90). Yet, little is known about the molecular mechanisms that regulate eNOS activity during high glucose exposure. The present study was designed to determine the involvement of protein interactions between eNOS and HSP90 in high glucose-induced endothelial cell apoptosis. The protein interaction of eNOS/HSP90 and eNOS/Akt were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to either control-level (5.5 mM) or high-level (33 mM) glucose for different durations (2, 4, 6, and 24 h). The results showed that the protein interactions between eNOS and HSP90 and between eNOS and Akt and the phosphorylation of eNOS were up-regulated by high glucose exposure for 2-4 h. With longer exposures, these effects decreased gradually. During early hours of exposure, the protein interactions of eNOS/HSP90 and eNOS/Akt and the phosphorylation of eNOS were all inhibited by geldanamycin, an HSP90 inhibitor. High glucose-induced endothelial cell apoptosis was also enhanced by geldanamycin and was reversed by NO donors. LY294002, a phosphatidylinositol 3 (PI3) kinase inhibitor, inhibited the association of eNOS/Akt and the phosphorylation of eNOS but had no effect on the interaction between eNOS and HSP90 during early hours of exposure. From our results we propose that, in HUVECs, during early phase of high glucose exposure, apoptosis can be prevented by enhancement of eNOS activity through augmentation of the protein interaction between eNOS and HSP90 and recruitment of the activated Akt. With longer exposure, dysregulation of eNOS activity would result in apoptosis. The present study provides a molecular basis for the effects of eNOS in the prevention of endothelial cells apoptosis during early phase of high glucose exposure. These observations may contribute to the understanding of the pathogenesis of vascular complications in diabetes mellitus.  相似文献   

12.
Moderate but not heavy drinking has been found to have a protective effect against cardiovascular morbidity. We investigated the effects of ethanol (EtOH) treatment on the cell survival-promoting phosphatidylinositol 3-kinase (PI3K)/Akt pathway in cultured human umbilical vein endothelial cells (HUVEC). Exposure of cells to 2-20 mm EtOH resulted in rapid (<10 min) induction of Akt phosphorylation that could be prevented by pertussis toxin or the PI3K inhibitors wortmannin and LY294002. Among the downstream effectors of PI3K/Akt, p70S6 kinase, glycogen synthase kinase 3alpha/beta, and IkappaB-alpha were phosphorylated, the latter resulting in 3-fold activation of NF-kappaB. EtOH also activated p44/42 mitogen-activated protein kinase in a PI3K-dependent manner. Low concentrations of EtOH increased endothelial nitric-oxide synthase activity, which could be blocked by transfection of HUVEC with dominant-negative Akt, implicating the PI3K/Akt pathway in this effect. The adenosine A1 receptor antagonist 1,3-dipopylcyclopentylxanthine prevented the phosphorylation of Akt observed in the presence of EtOH, adenosine, or the A1 agonist N(6)-cyclopentyladenosine. Incubation of HUVEC with 50-100 mm EtOH resulted in mitochondrial permeability transition and caspase-3 activation followed by apoptosis, as documented by DNA fragmentation and TUNEL assays. EtOH-induced apoptosis was unaffected by DPCPX and was potentiated by wortmannin or LY294002. We conclude that treatment with low concentrations of EtOH activates the cell survival promoting PI3K/Akt pathway in endothelial cells by an adenosine receptor-dependent mechanism and activation of the proapoptotic caspase pathway by higher concentrations of EtOH via an adenosine-independent mechanism can mask or counteract such effects.  相似文献   

13.
We have demonstrated that the expressions of small molecular weight G-protein, H-Ras, and its effector protein, Raf-1, are increased in the retina in diabetes, and the specific inhibitors of Ras function inhibit glucose-induced apoptosis of retinal capillary cells. This study is to examine the contributory roles for H-Ras in glucose-induced apoptosis of retinal endothelial cells by genetic manipulation of functionally active H-Ras levels. Bovine retinal endothelial cells were transfected with the plasmids of either wild type (WT), constitutively active (V12) or dominant-negative (N17) H-Ras. Glucose-induced increase in apoptosis, nitric oxide (NO) levels and activation of NF-κB and caspase-3 were determined in these genetically manipulated cells. Exposure of bovine retinal endothelial cells to 20 mM glucose significantly increased H-Ras activation as determined by Raf-1 binding assay. Overexpression of V12 in the endothelial cells further increased their glucose-induced apoptosis by 40%, NO levels by about 50%, and activated NF-κB and caspase-3 by about 30–40% compared to the untransfected cells incubated in 20 mM glucose. In contrast, overexpression of the inactive mutant, N17, inhibited glucose-mediated increases in apoptotic cell death, NO levels and NF-κB and caspase-3 activation; the values were significantly different (p < 0.02) compared to those obtained from the untransfected cells incubated under similar conditions. Our findings demonstrate that H-Ras activation is important in the activation of the specific signaling events leading to the accelerated retinal capillary cell apoptosis in hyperglycemic conditions, suggesting the possible use of H-Ras inhibitors to inhibit the pathogenesis of diabetic retinopathy.  相似文献   

14.
Wang L  Chen Q  Li G  Ke D 《Peptides》2012,33(1):92-100
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), is thought to exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function such as cell proliferation, migration, survival and angiogenesis. However, the effect of ghrelin on angiogenesis and the corresponding mechanisms have not yet been extensively studied in cardiac microvascular endothelial cells (CMECs) isolated from left ventricular myocardium of adult Sprague-Dawley (SD) rats. In our study, we found that ghrelin and GHSR are constitutively expressed in CMECs. Ghrelin significantly increases CMECs proliferation, migration, and in vitro angiogenesis. The ghrelin-induced angiogenic process was accompanied by phosphorylation of ERK and Akt. MEK inhibitor PD98059 abolished ghrelin-induced phosphorylation of ERK, but had no effect on Akt phosphorylation. PI3K inhibitor LY294002 abolished ghrelin-induced phosphorylation of Akt, but had no effect on ERK phosphorylation. Ghrelin-induced angiogenesis was partially blocked by treatment with PD98059 or LY294002. In addition, this angiogenic effect was almost completely inhibited by PD98059+LY294002. Pretreatment with GHSR1a blocker [D-Lys3]-GHRP-6 abolished ghrelin-induced phosphorylation of ERK, Akt and in vitro angiogenesis. In conclusion, this is the first demonstration that ghrelin stimulates CMECs angiogenesis through GHSR1a-mediated MEK/ERK and PI3K/Akt signal pathways, indicating that two pathways are required for full angiogenic activity of ghrelin. This study suggests that ghrelin may play an important role in myocardial angiogenesis.  相似文献   

15.
The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes   总被引:16,自引:0,他引:16  
Ghrelin, a stomach-derived hormone, induces adiposity when administered to rodents. Because ghrelin receptor is abundantly expressed in adipose tissue, we investigated the role of ghrelin in adipocyte biology. We observed ghrelin receptor expression in 3T3-L1 preadipocytes and adipocytes. Treatment of preadipocytes with ghrelin induced cellular proliferation and differentiation to mature adipocytes, as well as basal and insulin-stimulated glucose transport, but it inhibited adipocyte apoptosis induced by serum deprivation. Exposure of 3T3-L1 cells to ghrelin caused a rapid activation of MAPKs, especially ERK1/2. Chemical inhibition of MAPK blocked the mitogenic and antiapoptotic effects of ghrelin. Ghrelin also stimulated the insulin receptor substrate-associated phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 preadipocytes and adipocytes, whereas inhibition of this pathway blocked the effects of ghrelin on cell proliferation, antiapoptosis and glucose uptake. These findings suggest that the direct effects of ghrelin on proliferation, differentiation, and apoptosis in adipocytes may play a role in regulating fat cell number. These effects may be mediated via activation of the MAPK and phosphatidylinositol 3-kinase/Akt pathways.  相似文献   

16.
Hyperglycemia induces apoptotic cell death in a variety of cell types in diabetes, and the mechanism remains unclear. We report here that culture of rat retinal glial Müller cells in 25 mM glucose for 72 h significantly inactivated Akt and induced apoptosis. Likewise, hyperglycemia caused a significant dephosphorylation of Akt at serine-473 in Müller cells in the retina of streptozotocin-induced diabetic rats. Inactivation of Akt was associated with dephosphorylation of BAD, increased cytochrome c release, and activation of caspase-3 and caspase-9. Upregulation of Akt activity by overexpression of constitutively active Akt inhibited elevated glucose-induced apoptosis, whereas downregulation of Akt activity by overexpression of dominant negative Akt exacerbated elevated glucose-induced apoptosis, as assessed by caspase activity and nucleic acid staining. These data suggest that apoptosis induced by chronically elevated glucose is at least in part mediated by downregulation of Akt survival pathway in cultured Müller cells. It has been reported that antiapoptotic effect of Akt requires glucose in growth factor withdrawal-induced apoptosis. Our data suggest that although acutely elevated glucose may be beneficial to the cell survival, chronically elevated glucose can cause apoptosis via downregulation of Akt survival signaling.  相似文献   

17.
Hyperglycemia and elevation of methylglyoxal (MG) are symptoms of diabetes mellitus (DM). We previously showed that high glucose (HG; 30 mM) or MG (50-400 microM) could induce apoptosis in mammalian cells, but these doses are higher than the physiological concentrations of glucose and MG in the plasma of DM patients. The physiological concentration of MG and glucose in the normal blood circulation is about 1 microM and 5 mM, respectively. Here, we show that co-treatment with concentrations of MG and glucose comparable to those seen in the blood circulation of DM patients (5 microM and 15-30 mM, respectively) could cause cell apoptosis or necrosis in human umbilical vein endothelial cells (HUVECs) in vitro. HG/MG co-treatment directly increased the reactive oxygen species (ROS) content in HUVECs, leading to increases in intracellular ATP levels, which can control cell death through apoptosis or necrosis. Co-treatment of HUVECs with 5 microM MG and 20 mM glucose significantly increased cytoplasmic free calcium levels, activation of nitric oxide synthase (NOS), caspase-3 and -9, cytochrome c release, and apoptotic cell death. In contrast, these apoptotic biochemical changes were not detected in HUVECs treated with 5 microM MG and 30 mM glucose, which appeared to undergo necrosis. Pretreatment with nitric oxide (NO) scavengers could inhibit 5 microM MG/20 mM glucose-induced cytochrome c release, decrease activation of caspase-9 and caspase-3, and increase the gene expression and protein levels of p53 and p21, which are known to be involved in apoptotic signaling. Inhibition of p53 protein expression using small interfering RNA (siRNA) blocked the activation of p21 and the cell apoptosis induced by 5 microM MG/20 mM glucose. In contrast, inhibition of p21 protein expression by siRNA prevented apoptosis in HUVECs but had no effect on p53 expression. These results collectively suggest that the treatment dosage of MG and glucose could determine the mode of cell death (apoptosis vs. necrosis) in HUVECs, and both ROS and NO played important roles in MG/HG-induced apoptosis of these cells.  相似文献   

18.
Ghrelin is an orexigenic peptide hormone secreted by the stomach. In patients with metabolic syndrome and low ghrelin levels, intra-arterial ghrelin administration acutely improves their endothelial dysfunction. Therefore, we hypothesized that ghrelin activates endothelial nitric oxide synthase (eNOS) in vascular endothelium, resulting in increased production of nitric oxide (NO) using signaling pathways shared in common with the insulin receptor. Similar to insulin, ghrelin acutely stimulated increased production of NO in bovine aortic endothelial cells (BAEC) in primary culture (assessed using NO-specific fluorescent dye 4,5-diaminofluorescein) in a time- and dose-dependent manner. Production of NO in response to ghrelin (100 nM, 10 min) in human aortic endothelial cells was blocked by pretreatment of cells with NG-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor], or (D-Lys3)-GHRP-6 (selective antagonist of ghrelin receptor GHSR-1a), as well as by knockdown of GHSR-1a using small-interfering (si) RNA (but not by mitogen/extracellular signal-regulated kinase inhibitor PD-98059). Moreover, ghrelin stimulated increased phosphorylation of Akt (Ser473) and eNOS (Akt phosphorylation site Ser1179) that was inhibitable by knockdown of GHSR-1a using siRNA or by pretreatment of cells with wortmannin but not with PD-98059. Ghrelin also stimulated phosphorylation of mitogen-activated protein (MAP) kinase in BAEC. However, unlike insulin, ghrelin did not stimulate MAP kinase-dependent secretion of the vasoconstrictor endothelin-1 from BAEC. We conclude that ghrelin has novel vascular actions to acutely stimulate production of NO in endothelium using a signaling pathway that involves GHSR-1a, PI 3-kinase, Akt, and eNOS. Our findings may be relevant to developing novel therapeutic strategies to treat diabetes and related diseases characterized by reciprocal relationships between endothelial dysfunction and insulin resistance.  相似文献   

19.
Hyperglycemia is a major cause of diabetic vascular disease. High glucose can induce reactive oxygen species (ROS) and nitric oxide (NO) generation, which can subsequently induce endothelial dysfunction. High glucose is also capable of triggering endothelial cell apoptosis. Little is known about the molecular mechanisms and the role of ROS and NO in high glucose-induced endothelial cell apoptosis. This study was designed to determine the involvement of ROS and NO in high glucose-induced endothelial cell apoptosis. Expression of endothelial nitric oxide synthase (eNOS) protein and apoptosis were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to control-level (5.5 mM) and high-level (33 mM) glucose at various periods (e.g., 2, 12, 24, 48 h). We also examined the effect of high glucose on H(2)O(2) production using flow cytometry. The results showed that eNOS protein expression was up-regulated by high glucose exposure for 2-6 h and gradually reduced after longer exposure in HUVECs. H(2)O(2) production and apoptosis, which can be reversed by vitamin C and NO donor (sodium nitroprusside), but enhanced by NOS inhibitor (N(G)-nitro-L-arginine methyl ether), were collated to a different time course (24-48 h) to HUVECs. These results provide the molecular basis for understanding that NO plays a protective role from apoptosis of HUVECs during the early stage (<24 h) of high glucose exposure, but in the late stage (>24 h), high glucose exposure leads to the imbalance of NO and ROS, resulting to the observed apoptosis. This may explain, at least in part, the impaired endothelial function and vascular complication of diabetic mellitus that would occur at late stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号