首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When isolated rat mesenteric small arteries were submitted to 2 s of sonication, a nucleoside triphosphatase activity was released to the medium, mainly from the plasma membrane of the vascular smooth muscle cells. The activity was kinetically characterized: It hydrolysed ATP, UTP and GTP with the same substrate affinity and the same specific activity. CaATP, as well as MgATP were substrates for the enzyme with an apparent Km in the micromolar range. ATPase inhibitors: ouabain, vanadate, AlF4-, oligomycin and N-ethylmaleimide were without effect on the hydrolytic activity. Among other modifiers tested only N,N'-dicyclohexylcarbodiimide caused significant (greater than 30%) inhibition. In the presence of micromolecular concentrations of Ca2+ and Mg2+, small (less than 20 mM) concentrations of Na+, K+, Rb+, Cs+ and choline+, irrespective of the nature of the anion, activated the hydrolysis with an equilibrium ordered pattern, but concentrations of monovalent cation salts above 20 mM decreased the hydrolysis rate. No activation by monovalent cation salts was seen at millimolar concentrations of divalent cations and substrate. On the basis of the results a standard mixture is proposed, which allows a sensitive assay of the specific enzyme activity.  相似文献   

2.
The microsomal fraction of frog sciatic nerves was found to contain Ca2+- or Mg2+-dependent hydrolytic activity toward different nucleoside di- and triphosphates. In the presence of Ca2+ substrate specificity was in the order CTP > UTP > GTP > ATP. When Mg2+ was used, the triphosphates were approximately equally good substrates. ATP hydrolytic activity was very similar with Ca2+ or Mg2+ as the cofactor, whereas Ca2+ was the more potent activator of hydrolysis of the other triphosphates tested. The preparation showed some activity toward the nucleoside diphosphates but none toward the monophosphates or p-nitrophenylphosphate. The enzymic properties of ATP hydrolysis were more closely studied. The hydrolysis was optimal at 18--24 degrees C in the presence of 1 mM-Ca2+ or 1 mM-Mg2+. Ca2+- and Mg2+-ATP hydrolysis displayed pH maxima around 8.0--8.5 and 7.4--8.0, respectively. Vmax values for Ca2+- and Mg2+-ATP hydrolysis similar: approx. 12 mumol Pi per h per mg protein with a Km value of approx. 0.05 mM. The ATP hydrolysis activity was inhibited by NaF but unaffected by ouabain, vanadate, cytochalasin B, and various drugs known to influence ATPase activity of mitochondria. Zn2+ stimulated the ATP hydrolysis activity at low concentrations (10(-6)-10(-5) M) and inhibited it at higher concentrations. The possibility that these observations account for stimulation and inhibition of axonal transport in frog sciatic nerves exposed to similar concentrations of Zn2+ is discussed.  相似文献   

3.
We employed the photoaffinity probe 8-azido-adenosine 5'-triphosphate (aATP) to identify the nuclear envelope (NE) nucleosidetriphosphatase activity (NTPase) implicated in control of RNA transport. The photoprobe was hydrolyzed at rates comparable to those for ATP, with a Michaelis constant of 0.225 mM. Photolabeling was dependent upon UV irradiation (300-nm max) and was not affected by quercetin. Unlabeled ATP or GTP competed with [32P]aATP in photolabeling experiments, and UTP was a less effective competitor, paralleling the substrate specificity of the NTPase. Incubation of NE with aATP led to a UV, time, and concentration dependent irreversible inactivation of NTPase. The inactivation could be blocked by ATP or GTP. Polyacrylamide gel electrophoresis and autoradiography of photolabeled NE showed selective, UV-dependent labeling of a 46-kDa protein with both [gamma-32P]aATP and [alpha-32P]aATP. This band was not labeled with [gamma-32P]ATP. Since the NE NTPase implicated in RNA transport is modulated by RNA, we examined the effects of RNA on the labeling process. Removal of RNA from the NE preparations (by RNase/DNase digestion) reduced NTPase by 30-40% and eliminated photolabeling of the 46-kDa band. Addition of yeast RNA to such preparations increased NTPase activity to control levels and selectively reinstated photolabeling of the 46-kDa band. These results suggest that the 46-kDa protein represents the major NTPase implicated in RNA transport.  相似文献   

4.
The rate of ATP hydrolysis under multi- and unisite conditions was determined in the native F1-inhibitor protein complex of bovine heart mitochondria (Adolfsen, R., MacClung, J.A., and Moudrianakis, E.N. (1975) Biochemistry 14, 1727-1735). Aurovertin was used to distinguish between hydrolytic activity catalyzed by the F1-ATPase or the F1-inhibitor protein (F1.I) complex. We found that incubation of aurovertin with the F1.I complex, prior to the addition of substrate, results in a stimulation of the hydrolytic activity from 1 to 8-10 mumol min-1 mg-1. The addition of aurovertin to a F1.I complex simultaneously with ATP results in a 30% inhibition with respect to the untreated F1.I. In contrast, if the F1.I complex is activated up to a hydrolytic activity of 80 mumol min-1 mg-1, aurovertin inhibits the enzyme in a manner similar to that described for F1-ATPase devoid of the inhibitor protein. The native F1.I complex catalyzes the hydrolysis of ATP under conditions for single catalytic site, liberating 0.16-0.18 mol of Pi/mol of enzyme. Preincubation with aurovertin before the addition of substrate had no effect under these conditions. On the other hand, if the F1.I ATPase was allowed to hydrolyze ATP at a single catalytic site, catalysis was inhibited by 98% by aurovertin. In F1-ATPase, the hydrolysis of [gamma-32P]ATP bound to the first catalytic site is promoted by the addition of excess ATP, in the presence or absence of aurovertin. Under conditions for single site catalysis, hydrolysis of [gamma-32P]ATP in the F1.I complex was not promoted by excess ATP. We conclude that the endogenous inhibitor protein regulates catalysis by promoting the entrapment of adenine nucleotides at the high affinity catalytic site, thus hindering cooperative ATP hydrolysis.  相似文献   

5.
Fat cells from rat and rabbit hydrolyzed externally applied adenosine triphosphate at a rate of about 1.8 nmol times mg(-1) cells times min(-1) corresponding to about 0.3 mumol times mg(-1) protein tinus min(-1). Similar activities were found in cell homogenates. In purified adipocyte plasma membranes the rate of hydrolysis was about 1.8 mumol times mg(-1) protein times min(-1). The hydrolytic activity was dependent on divalent metal ions. Mg(2+), Mn(2+) and Ca(2+) gave highest activities. The activity was maximal at about equimolar concentrations of M(2+) and ATP. Km for MgATP was about 0.23 mM and for CaATP about 0.36 mM. Combinations of Mg(2+) and Ca(2+), or of Mg(2+), Na(+) and K(+) gave similar activities as did Mg(2+) only. At concentrations of 1 mM the following nucleotides were hydrolyzed with a decreasing rate: ATP > ITP > GTP > UTP = CTP. In isolated fat cells the beta-adrenergic drug isoproterenol and insulin slightly increased the rate of hydrolysis of external ATP, while the alpha-effector clonidine was inhibitory. The results suggest that a major portion of the ATP hydrolytic activity of the fat cell plasma membrane represents a nucleotide pyrophosphatase activity with access to externally applied ATP.  相似文献   

6.
Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues.  相似文献   

7.
Nucleotides are important extracellular signaling molecules. At least five mammalian P2Y receptors exist that are specifically activated by ATP, UTP, ADP, or UDP. Although the existence of ectoenzymes that metabolize extracellular nucleotides is well established, the relative flux of ATP and UTP through their extracellular metabolic products remains undefined. Therefore, we have studied the kinetics of accumulation and metabolism of endogenous ATP in the extracellular medium of four different cell lines. ATP concentrations reached a maximum immediately after change of medium and decreased thereafter with a single exponential decay (t(1/2);1 approximately;230-40 min). ATP levels did not fall to zero but attained a base-line concentration that was independent of the medium volume and of the initial ATP concentration. Although the base-line concentration of ATP remained stable for up to 12 h, [gamma-(32)P]ATP added to resting cells as a radiotracer was completely degraded within 120 min, indicating that steady state reflected a basal rate of ATP release balanced by ATP hydrolysis (20-200 fmol x min(-)(1) x cell(-)(6)). High performance liquid chromatography analysis revealed that the gamma-phosphate of ATP was rapidly, although transiently, transferred during steady state to species subsequently identified as UTP and GTP, indicating the existence of both ecto-nucleoside diphosphokinase activity and the accumulation of endogenous UDP and GDP. Conversely, addition of [gamma-(32)P]UTP to resting cells resulted in transient formation of [gamma-(32)P]ATP, indicating phosphorylation of endogenous ADP by nucleoside diphosphokinase. The final (32)P-products of [gamma-(32)P]ATP metabolism were [(32)P]orthophosphoric acid and a (32)P-labeled species that was further purified and identified as [(32)P]inorganic pyrophosphate. In C6 cells, the formation of [(32)P]pyrophosphate from [gamma-(32)P]ATP at steady state exceeded by 3-fold that of [(32)P]orthophosphate. These results illustrate for the first time a constitutive release of ATP and other nucleotides and reveal the existence of a complex extracellular metabolic pathway for released nucleotides. In addition to the existence of an ecto-ATPase activity, our results suggest a major scavenger role of ecto-ATP pyrophosphatase and a transphosphorylating activity of nucleoside diphosphokinase.  相似文献   

8.
Adenosine-5′-phosphosulfate (APS) and adenosine-3′-phosphate 5′-phosphosulfate (PAPS) have been used as precursors of sulfoquinovosyldiacylglycerol (SQDG) in intact chloroplasts incubated in the dark. Competition studies demonstrated APS was preferred over PAPS and SO42−. Rates of SQDG synthesis up to 3 nanomoles per milligram of chlorophyll per hour were observed when [35S]APS and appropriate cofactors were supplied to chloroplasts incubated in the dark. The pH optimum for utilization of APS was 7.0. The incorporation was linear for at least 30 minutes. ATP and UTP stimulated the incorporation of sulfur from APS into SQDG, but the most stimulatory additions were DHAP and glycerol-3-P. The concentration curve for APS showed a maximum at 20 micromolar in the absence of DHAP and 30 micromolar in the presence of DHAP. The optimum concentration of DHAP for conversion of APS into SQDG was 2 millimolar. Rates of synthesis up to 4 nanomoles per milligram of chlorophyll per hour were observed when [35S]PAPS was the sulfur donor and appropriate cofactors were supplied to chloroplasts. Optimal rates for conversion of sulfur from PAPS into SQDG occurred with concentrations of DHAP between 5 and 10 millimolar. DHAP was by far the most effective cofactor, although ATP and UTP also stimulated the utilization of PAPS for SQDG biosynthesis. In general, triose phosphates, including glycerol-3-P were not effective cofactors for SQDG biosynthesis.  相似文献   

9.
The ATP analog arylazido-ATP 5'-triphosphate) (3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)adenosine 5'-triphosphate) was shown to phosphorylate the calcium-ATPase from sarcoplasmic reticulum in the absence of calcium. Levels of 0.6 nmol of phosphoenzyme/mg of protein were attained. Calcium either at micromolar or millimolar concentrations did not affect the level of phosphoenzyme. A non-Michaelian dependence of the hydrolytic activity as a function of analog concentration was obtained in the absence of calcium. Calcium addition did not modify either the analog concentration dependence for the activation of hydrolysis or the maximal rate of hydrolysis. In the presence of micromolar calcium, arylazido-ATP promoted calcium accumulation inside the vesicles, and a steady-state level of 100 nmol of calcium/mg of protein was maintained. ESR spectra of spin-labeled ATPase showed that addition of the analog in the absence of calcium caused a spectral change, and the resulting spectral parameters were different from those obtained for ATP under similar conditions. Calcium addition did not cause any further modification of the spectra, which was clearly distinct from the change when ATP was used. The partition coefficient of the analog from a water medium into an organic phase was found to be 1 order of magnitude higher than that of ATP. It is suggested that it might be the hydrophobic nature of the analog which makes it bypass the calcium requirement for utilization of the substrate by the ATPase.  相似文献   

10.
The biologically active dinucleotides adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')-triphospho(5')adenosine (Ap3A), which are both releasable into the circulation from storage pools in thrombocytes, are catabolized by intact bovine aortic endothelial cells. 1. Compared with extracellular ATP and ADP, which are very rapidly hydrolysed, the degradation of Ap4A and Ap3A by endothelial ectohydrolases is relatively slow, resulting in a much longer half-life on the endothelial surface of the blood vessel. The products of hydrolysis are further degraded and finally taken up as adenosine. 2. Ap4A hydrolase has high affinity for its substrate (Km 10 microM). 3. ATP as well as AMP transiently accumulates in the extracellular fluid, suggesting an asymmetric split of Ap4A by the ectoenzyme. 4. Mg2+ or Mn2+ at millimolar concentration are needed for maximal activity; Zn2+ and Ca2+ are inhibitory. 5. The hydrolysis of Ap4A is retarded by other nucleotides, such as ATP and Ap3A, which are released from platelets simultaneously with Ap4A.  相似文献   

11.
Choleragen-dependent ADP ribosylation of soluble proteins from bovine thymus, using [32P]NAD as substrate, was increased 3- to 4-fold by GTP. The effect was specific for nucleoside triphosphate, with GTP approximately equal to ITP greater than CTP greater than ATP greater than UTP. Half-maximal enhancement was observed with 0.5 mM GTP. The magnitude of the GTP effect decreased with increasing NAD concentration; GTP had no effect on hydrolysis of NAD at low NAD concentrations. Digestion of ADP-ribosylated proteins with snake venom phosphodiesterase yielded primarily 5'-AMP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of soluble proteins from thymus after incubation with choleragen and [32P]NAD separated numerous ADP-ribosylated proteins; radioactivity in all bands was increased by nucleoside triphosphate. Choleragen catalyzed the ADP ribosylation of several purified proteins; depending on the protein, GTP either increased, decreased, or had no effect on the extent of ADP ribosylation. Choleragen-dependent ADP ribosylation of a wide variety of proteins is consistent with the possibility that intoxication results in covalent modification of more than one cellular protein and perhaps alters the activity of other enzymes in addition to adenylate cyclase.  相似文献   

12.
Lipoxygenases catalyze peroxidation of polyunsaturated fatty acids containing the 1-cis, 4-cis pentadiene structure. Linoleic (18:2), linolenic (18:3), and arachidonic (20:4) acids are the predominant substrates for this class of enzymes. Effects of 15-lipoxygenase on the hydrolysis of adenosine 5'-triphosphate were investigated in vitro using soybean lipoxygenase and adenosine 5'-[gamma-32P]triphosphate. The amount of inorganic phosphate released from adenosine 5'-triphosphate was dependent upon enzyme as well as substrate concentrations, pH, and the duration of incubation. The ATPase activity with a Vmax value of 3.3 mumol.mg protein-1.h-1 and a Km value of 5.9 mM was noted in the presence of different concentrations of ATP at pH = 7.4. Phenidone, a lipoxygenase inhibitor, had no effect on this reaction. These findings suggest that soybean lipoxygenase catalyzes the release of inorganic phosphate from ATP primarily via hydrolysis.  相似文献   

13.
W D Frasch  B R Selman 《Biochemistry》1982,21(15):3636-3643
The reaction mechanism and substrate specificity of soluble chloroplast coupling factor 1 (CF1) from spinach were determined by using the purified isomers of chromium-nucleotide complexes either as substrates for the enzyme or as inhibitors of the Ca2+-dependent ATPase activity. The isolation of CrADP( [32P]Pi) formed upon the addition of the enzyme to [32P]Pi and lambda-bidentate CrADP and the observation that the lambda-bidentate CrADP epimer was 20-fold more effective in inhibiting the Ca2+-dependent ATPase activity than was the delta epimer suggest that the substrate of phosphorylation catalyzed by CF1 is the lambda-bidentate metal ADP epimer. Tridentate CrATP was hydrolyzed by soluble CF1 to CrADP(Pi) at an initial rate of 3.2 mumol (mg of CF1)-1 min-1, indicating that the tridentate metal ATP is the substrate for ATP hydrolysis. From these results a mechanism for the phosphorylation of ADP catalyzed by coupling factor 1 is proposed whereby the bidentate metal ADP isomer associates with the enzyme, phosphate inserts into the coordination sphere of the metal, and the oxygen of the beta-phosphate of ADP attacks the inorganic phosphate by an SN2 type reaction. The resulting product is the tridentate ATP ligand.  相似文献   

14.
Endogenous protein kinase activity was detected in the outer plasma membrane of 373 and SV40 transformed 3T3 cells. When intact cells were incubated with [gamma-32P]ATP, there was a transfer of [32P]phosphate into an acid-insoluble product. The reaction was: (a) linear as a function of time (up to 30 min), (b) proportional to the number of cells present and (c) dependent on temperature and Mg2+ concentration. The acid-insoluble product was susceptible to pronase but not RNase or DNase. More specifically, phosphomonoester bonds to serine and threonine were identified. There was less than 3% hydrolysis of the [gamma-32P]ATP during the reaction; moreover, free [32P]phosphate failed to substitute for the ATP. The reaction product was located on the cell surface, as evidenced by the fact that it could be removed by mild trypsin treatment of intact 3T3 cells. Further evidence for the surface location of the kinase was shown by its activity in phosphorlating exogenous substrate, histone, and phosvitin. The level of phosphorylation increased by 2- to 4-fold prior to the start of S phase when quiescent 3T3 cells were stimulated to reinitiate growth by the addition of serum. The SV40 3T3 cells had from 5- to 10-fold more activity per cell than the quiescent 3T3 cells. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and radioautography show at least 25 phosphorylated proteins; the surface label pattern of 3T3 cells differs from that of SV40-transformed 3T3 cells.  相似文献   

15.
Phosphoinositides in frog skeletal muscle: a quantitative analysis   总被引:1,自引:0,他引:1  
The contents of major phospholipids per g of wet wt. in frog skeletal muscle are: 5.3 mumol PC; 1.4 mumol PE; 1 mumol SM; 0.4 mumol PtdIns; 0.3 mumol CL; and 0.13 mumol PS. The quantities of polyphosphoinositides per g of wet wt. are: 181 nmol PtInsP; 28 nmol PtdInsP2; and 8 nmol lyso-PtdInsP2. The specific activity of labelling of the total muscle ATP attained by external incubation with [32P]Pi was found to be 57 dpm/nmol x g muscle wet wt. PtdInsP2, the highest labelled polyphosphoinositide, showed a specific activity of 64,000 dpm/nmol per g muscle wet wt., suggesting that high specific activity ATP may be compartmentalized in the local environment of the triads and used as a substrate by the PtdIns and PtInsP kinase in that region. PtdInsP2 which is the immediate precursor for the release of InsP3, is found at a significant concentration and strategically located for its postulated role as a substrate for the action of phosphoinositidase C. The presence of a novel endogenous polyphosphoinositide, lyso-PtdInsP2, in animal tissues is reported for the first time. Electrical stimulation leads towards a rapid catabolization of polyphosphoinositides revealed by reductions in the 3H- and 32P-labelling, suggesting that muscle excitation is associated with the activation of breaking down of polyphosphoinositides.  相似文献   

16.
We have covalently modified the recA protein from Escherichia coli with the photoaffinity ATP analog 8-azido-[alpha-32P]ATP (N3-ATP). Covalent attachment of N3-ATP to recA protein is dependent on native protein conformation and is shown to be specific for the site of ATP hydrolysis by the following criteria. (i) Binding of the probe to recA protein is inhibited by ATP and competitive inhibitors of its ATP hydrolytic activity, e.g. adenosine 5'-O-(thiotriphosphate), ADP, and UTP, but not by adenosine; (ii) N3-ATP is efficiently hydrolyzed by recA protein in the presence of single-stranded DNA; (iii) labeling of recA protein occurs at a single site as judged by two-dimensional thin-layer peptide mapping and high-performance liquid chromatography peptide separation. We have purified and identified a tryptic fragment, spanning amino acid residues 257-280, which contains the primary site of attachment of N3-ATP. This peptide is likely to be contained within the ATP hydrolytic site of recA protein.  相似文献   

17.
Subcellular compartmentation of calcium has been studied in digitonin-treated pigeon erythrocytes. The following calcium pools could be detected: A non-vesicular and tightly bound pool of calcium able to reach values equivalent to 5 mumol calcium/ml cells that required millimolar calcium concentrations. A vesicular calcium pool with high calcium affinity that had properties similar to mitochondrial calcium transport. Extracellularly added ATP was strongly hydrolyzed by intact pigeon erythrocytes in the presence of either magnesium or calcium. The hydrolysis of ATP was not coupled to fluxes of either 45Ca2+ or 86Rb+ and most probably took place inside the cells.  相似文献   

18.
One of the earliest actions of thrombin in fibroblasts is stimulation of a phospholipase C (PLC) that hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. In membranes prepared from WI-38 human lung fibroblasts, thrombin activated an inositol-lipid-specific PLC that hydrolysed [32P]PIP2 and [32P]phosphatidylinositol 4-monophosphate (PIP) to [32P]IP3 and [32P]inositol 1,4-bisphosphate (IP2) respectively. Degradation of [32P]phosphatidylinositol was not detected. PLC activation by thrombin was dependent on GTP, and was completely inhibited by a 15-fold excess of the non-hydrolysable GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP[S]). Neither ATP nor cytosol was required. Guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) also stimulated polyphosphoinositide hydrolysis, and this activation was inhibited by GDP[S]. Stimulation of PLC by either thrombin or p[NH]ppG was dependent on Ca2+. Activation by thrombin required Ca2+ concentrations between 1 and 100 nM, whereas stimulation of PLC activity by GTP required concentrations of Ca2+ above 100 nM. Thus the mitogen thrombin increased the sensitivity of PLC to concentrations of free Ca2+ similar to those found in quiescent fibroblasts. Under identical conditions, another mitogen, platelet-derived growth factor, did not stimulate polyphosphoinositide hydrolysis. It is concluded that an early post-receptor effect of thrombin is the activation of a Ca2+- and GTP-dependent membrane-associated PLC that specifically cleaves PIP2 and PIP. This result suggests that the cell-surface receptor for thrombin is coupled to a polyphosphoinositide-specific PLC by a GTP-binding protein that regulates PLC activity by increasing its sensitivity to Ca2+.  相似文献   

19.
Soluble NTPase, differing in its properties from known proteins exhibiting NTPase activity, was purified from bovine brain to homogeneity. The enzyme has pH optimum at 7.5 and shows absolute dependence on bivalent cations and broad substrate specificity towards nucleoside-5 -tri- and -diphosphates, characteristics of apyrases. The NTPase follows Michaelis-Menten kinetics in the range of investigated substrate concentrations, the apparent K(m) values for UTP, ITP, GTP, CTP, CDP, and ATP being 86, 25, 41, 150, 500, and 260 microM, respectively. According to gel-filtration and SDS-PAGE data, the molecular mass of the enzyme is 60 kD. The NTPase is localized in the cytosol fraction and expressed in different bovine organs and tissues. Total NTPase activity of extracts of bovine organs and tissues decreases in the following order: liver > heart > skeletal muscle > lung > brain > spleen > kidney ~ small intestine. The enzyme activity can be regulated by acetyl-CoA, alpha-ketoglutarate, and fructose-1,6-diphosphate acting as activators in physiological concentrations, whereas propionate exhibits an inhibitory effect.  相似文献   

20.
The effects of various substrates and alternative substrates on the hydrolytic activity of beef heart mitochondrial ATPase was examined. It was found that ATP or ADP, ITP hydrolysis showed positive cooperativity. IDP inhibited ITP hydrolysis and caused positive cooperativity. When ITP was present during an ATP hydrolysis assay, the rate of ATP hydrolysis was stimulated. IDP had no effect on ATP hydrolysis rates. A nonhydrolyzable ITP analog, inosine 5'-(beta, gamma-imido)triphosphate (IMP-P(NH)P), was synthesized and purified. It was found to be a potent competitive inhibitor of ITP and GTP hydrolytic activity. However, this beta-gamma-imido-bridged ITP analog was found to change the ITP and GTP hydrolysis kinetics from linear to positively cooperative. This compound inhibited ATP hydrolysis at substrate concentrations of 100 muM and lower, and stimulated ATP hydrolysis at substrate concentrations between 100 muM and 2 mM. IMP-P(NH)P had no effect on ATP hydrolysis when the substrate concentration was above 2 mM. In the presence of the activating anion, bicarbonate, IMP-P(NH)P inhibited ATP hydrolysis competitively, and induced positive cooperativity. IMP-P(NH)P had no effect on the ATP equilibrium Pi exchange, the ITP equilibrium Pi exchange, or ATP synthesis catalyzed by beef heart submitochondrial particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号