共查询到20条相似文献,搜索用时 12 毫秒
1.
Characterization of the interaction between the nucleotide exchange factor EF-Ts from nematode mitochondria and elongation factor Tu 总被引:1,自引:0,他引:1
Caenorhabditis elegans mitochondria have two elongation factor (EF)-Tu species, denoted EF-Tu1 and EF-Tu2. Recombinant nematode EF-Ts purified from Escherichia coli bound both of these molecules and also stimulated the translational activity of EF-Tu, indicating that the nematode EF-Ts homolog is a functional EF-Ts protein of mitochondria. Complexes formed by the interaction of nematode EF-Ts with EF-Tu1 and EF-Tu2 could be detected by native gel electrophoresis and purified by gel filtration. Although the nematode mitochondrial (mt) EF-Tu molecules are extremely unstable and easily form aggregates, native gel electrophoresis and gel filtration analysis revealed that EF-Tu·EF-Ts complexes are significantly more soluble. This indicates that nematode EF-Ts can be used to stabilize homologous EF-Tu molecules for experimental purposes. The EF-Ts bound to two eubacterial EF-Tu species (E.coli and Thermus thermophilus). Although the EF-Ts did not bind to bovine mt EF-Tu, it could bind to a chimeric nematode–bovine EF-Tu molecule containing domains 1 and 2 from bovine mt EF-Tu. Thus, the nematode EF-Ts appears to have a broad specificity for EF-Tu molecules from different species. 相似文献
2.
Interaction of the isolated domain II/III of Thermus thermophilus elongation factor Tu with the nucleotide exchange factor EF-Ts. 总被引:4,自引:0,他引:4 下载免费PDF全文
M E Peter C O Reiser N K Schirmer T Kiefhaber G Ott N W Grillenbeck M Sprinzl 《Nucleic acids research》1990,18(23):6889-6893
The middle and C-terminal domain (domain II/III) of elongation factor Tu from Thermus thermophilus lacking the GTP/GDP binding domain have been prepared by treating nucleotide-free protein with Staphylococcus aureus V8 protease. The isolated domain II/III of EF-Tu has a compact structure and high resistance against tryptic treatment and thermal denaturation. As demonstrated by circular dichroism spectroscopy, the isolated domain II/III does not contain any alpha-helical structure. Nucleotide exchange factor, EF-Ts, was found to interact with domain II/III, whereas the binding of aminoacyl-tRNA, GDP and GTP to this EF-Tu fragment could not be detected. 相似文献
3.
J F Eccleston T F Kanagasabai M A Geeves 《The Journal of biological chemistry》1988,263(10):4668-4672
The release of a chromophoric analogue of GDP, 2-amino-6-mercaptopurine riboside 5'-diphosphate (thioGDP), from its complex with elongation factor Tu (EF-Tu) is catalyzed by elongation factor Ts (EF-Ts). The mechanism of this reaction includes a ternary complex; EF-Tu.thioGDP.EF-Ts (Eccleston, J. F. (1984) J. Biol. Chem. 259, 12997-13003). This mechanism has been further investigated using pressure relaxation techniques combined with spectrophotometric measurements. The equilibrium of a solution of EF-Tu, EF-Ts, and thioGDP over a range of concentrations is perturbed on increasing the pressure to 150 atm. Rapid decrease of the pressure back to 1 atm results in a biphasic relaxation process, an initial fast phase which is complete within 1 ms followed by a slower phase. This is interpreted as the result of an isomerization of the EF-Tu.thioGDP.EF-Ts ternary complex which occurs before the release of thioGDP. Such an isomerization process may be a general feature in the release of GDP from guanosine nucleotide-binding proteins. 相似文献
4.
Bacterial elongation factor Ts: isolation and reactivity with elongation factor Tu. 总被引:2,自引:0,他引:2 下载免费PDF全文
An improved method for the purification of bacterial polypeptide elongation factor Ts (EF-Ts) from one mesophile (Escherichia coli) and two thermophiles (Bacillus stearothermophilus and PS3) is described. The improvements are both in the facility of isolation and in increased yields. The purified factors were used for cross-reactivity studies with elongation factor Tu (EF-Tu) obtained from the same bacterial strains. In all combinations studied, the efficiency of EF-Ts in catalyzing the exchange of EF-Tu-bound GDP was proportional to the strength of the protein-protein complex. Whereas the factors from the two thermophiles were interchangeable, the mesophilic EF-Ts formed a very weak complex with thermophilic EF-Tu; however, thermophilic EF-Ts formed very strong complexes with mesophilic EF-Tu. Thus, e.g., EF-Tu from E. coli formed a complex with EF-Ts from B. stearothermophilus which was 10 times more stable than the corresponding homologous complex. 相似文献
5.
6.
Two slow-growing kirromycin-resistant Escherichia coli mutants with altered EF-Tu (Ap and Aa) were studied in vivo in strains with an inactive tufB gene. Mutant form Aa was isolated as an antisuppressor of the tyrT(Su3) nonsense suppressor, as described here. Ap, the tufA gene product of strain D2216 (from A. Parmeggiani), has previously been shown to give an increased GTPase activity. The slow cellular growth rates of both EF-Tu mutants are correlated with decreased translational elongation rates. Ap and Aa significantly decrease suppression levels of both nonsense and missense suppressor tRNAs [tyrT(Su3), trpT(Su9), glyT(SuAGA/G)], but have only little or no effect on misreading by wild-type tRNAs. A particular missense suppressor, lysT(SuAAA/G), which acts by virtue of partial mischarging as the result of an alteration in the amino acid stem, is not significantly affected by the EF-Tu mutations. The combination of tufA(Aa) and a rpsD12 ribosomal mutation is lethal at room temperature and the double-mutant strain has an elevated temperature optimum (42 degrees C) for growth rate, translation rate and nonsense suppression. Our data indicate an alterated interaction between Aa and the ribosome, consistent with our in vitro results. 相似文献
7.
In Salmonella typhimurium and Escherichia coli, elongation factor Tu (EF-Tu) is methylated as shown by its incorporation of labeled methyl residues from [methyl-3H]methionine. Analysis of the nature of the methyl-containing residues by protein hydrolysis, followed by paper chromatography and high voltage electrophoresis showed that both mono- and dimethyllysine are present. Eighty per cent of the EF-Tu molecules are methylated if methylation occurs at a unique lysine residue. The EF-Tu fraction which is not methylated is still able to accept methyl groups, as shown by methylation of approximately 10% of the EF-Tu after addition of chloramphenicol (D-(-)-threo-2,2-dichloro-N-[beta-hydroxy-alpha-(hydroxymethyl)-o-nitrophenethyl] acetamide) to inhibit further protein synthesis. There is no evidence of turnover of the methyl residues. We attempted to separate the methylated from the nonmethylated form of EF-Tu by isoelectric focusing on polyacrylamide gel, but were unable to do so. 相似文献
8.
Mutation of His84, a residue situated in one of the loops forming the guanine nucleotide binding pocket, was introduced in the G domain, the isolated N-terminal half molecule of bacterial elongation factor Tu (EF-Tu), in order to investigate the role of this residue on the basic activities of EF-Tu: the interaction with GDP and GTP and the hydrolysis of GTP. Substitution of His84 by Gly reduces the GTPase activity of the G domain to 5%; this activity can still be stimulated by raising the KCl concentration as the activity of wild-type G domain or the intact molecule. Since the affinities of the mutant protein for GDP and GTP are essentially the same as those of the wild-type G domain, His84 is apparently not involved in the binding of the substrates. Calculations of the change in free energy of activation of the GTPase reaction following substitution of His84 by Gly point to the disruption of a weak hydrogen bond, involved in the catalytic reaction. This probably concerns an interaction via a water molecule. The possible mechanism underlying the GTPase reaction is discussed in light of the three-dimensional structure of EF-Tu, taking into account the situation of Ha-ras p21. 相似文献
9.
L A Zeef L Bosch P H Anborgh R Cetin A Parmeggiani R Hilgenfeld 《The EMBO journal》1994,13(21):5113-5120
This paper reports the generation of Escherichia coli mutants resistant to pulvomycin. Together with targeted mutagenesis of the tufA gene, conditions were found to overcome membrane impermeability, thereby allowing the selection of three mutants harbouring elongation factor (EF)-Tu Arg230-->Cys, Arg333-->Cys or Thr334-->Ala which confer pulvomycin resistance. These mutations are clustered in the three-domain junction interface of the crystal structure of the GTP form of Thermus thermophilus EF-Tu. This result shares similarities with kirromycin resistance; kirromycin-resistant mutations cluster in the domain 1-3 interface. Since both interface regions are involved in the EF-Tu switch mechanism, we propose that pulvomycin and kirromycin both act by specifically disturbing the allosteric changes required for the switch from EF-Tu-GTP to EF-Tu-GDP. The three-domain junction changes dramatically in the switch to EF-Tu.GDP; in EF-Tu.GDP this region forms an open hole. Structural analysis of the mutation positions in EF-Tu.GTP indicated that the two most highly resistant mutants, R230C and R333C, are part of an electrostatic network involving numerous residues. All three mutations appear to destabilize the EF-Tu.GTP conformation. Genetic and protein characterizations show that sensitivity to pulvomycin is dominant over resistance. This appears to contradict the currently accepted model of protein synthesis inhibition by pulvomycin. 相似文献
10.
Cai YC Bullard JM Thompson NL Spremulli LL 《The Journal of biological chemistry》2000,275(27):20308-20314
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA). 相似文献
11.
Limited tryptic digestion of elongation factor Tu from Escherichia coli and Bacillus stearothermophilus at room temperature produces a small number of scissions without concomitant loss of GDP binding activity. The small number of large tryptic fragments produced are not separated by gel filtration under non-denaturing conditions and they coelute with the GDP binding activity. Crystals of the trypsin-treated elongation factor Tu from E. coli obtained from polyethylene glycol solutions are apparently identical to the pseudotetragonal crystals previously reported (Sneden et al., 1973). 相似文献
12.
13.
Summary A restriction fragment enrichment procedure was devised for the identification and cloning of the gene for protein synthesis elongation factor Tu (EF-Tu) from Methanococcus vannielii, employing hybridisation with an internal tufB gene probe from Escherichia coli. Methanococcus contains a single tuf gene on its chromosome; it is expressed in E. coli and it codes for a polypeptide of 46.5 kDa. The overall architecture of the protein bears a striking resemblance to that of eukaryotic elongation factor 1 (EF-1). The close similarity to EF-1 is supported by the sequence homology values which are in the range of 34% to 35% with eubacterial, plastid and mitochondrial EF-Tu sequences and as high as 52% to 54% with those from eukaryotic EF-1. 相似文献
14.
Most tRNAs share a common secondary structure containing a T arm, a D arm, an anticodon arm and an acceptor stem. However, there are some exceptions. Most nematode mitochondrial tRNAs and some animal mitochondrial tRNAs lack the T arm, which is necessary for binding to canonical elongation factor Tu (EF-Tu). The mitochondria of the nematode Caenorhabditis elegans have a unique EF-Tu, named EF-Tu1, whose structure has supplied clues as to how truncated tRNAs can work in translation. EF-Tu1 has a C-terminal extension of about 60 aa that is absent in canonical EF-Tu. Recent data from our laboratory strongly suggests that EF-Tu1 recognizes the D-arm instead of the T arm by a mechanism involving this C-terminal region. Further biochemical analysis of mitochondrial tRNAs and EF-Tu from the distantly related nematode Trichinella spp. and sequence information on nuclear and mitochondrial DNA in arthropods suggest that T-armless tRNAs may have arisen as a result of duplication of the EF-Tu gene. These studies provide valuable insights into the co-evolution of RNA and RNA-binding proteins. 相似文献
15.
Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli 总被引:3,自引:0,他引:3
Aminoacylation and transportation of tmRNA to stalled ribosomes constitute prerequisite steps for trans-translation, a process facilitating the release of stalled ribosomes from 3' ends of truncated mRNAs and the degradation of incompletely synthesized proteins. Kinetic analysis of the aminoacylation of tmRNA indicates that tmRNA has both a lower affinity and a lower turnover number than cognate tRNA(Ala) for alanyl-tRNA synthetase, resulting in a 75-fold lower k(cat)/K(M) value. The association rate constant of Ala-tmRNA for elongation factor Tu in complex with GTP is about 150-fold lower than that of Ala-tRNA(Ala), whereas its dissocation rate constant is about 5-fold lower. These observations can be interpreted to suggest that additional factors facilitate tmRNA binding to ribosomes. 相似文献
16.
Polypeptide elongation factor Tu from Halobacterium marismortui 总被引:1,自引:0,他引:1
A GDP-binding protein of 60 kDa from Halobacterium marismortui has been purified to homogeneity. The purification has been carried out in high-salt buffers or in 50% glycerol buffers to protect the halophilic protein from denaturation. Evidence that this protein is the halophilic elongation factor Tu (hEF-Tu) is provided by the high homology of its N terminus with the corresponding sequences of other EF-Tus, and by immunological studies. Like some other EF-Tus the native protein can be cleaved with trypsin without concomitant loss of GDP-binding ability. The molecular mass of this hEF-Tu is higher than that for the corresponding factors from other sources including the halobacterium Halobacterium cutirubrum. The protein possesses typical halophilic characteristics, in that it is stable and active in 3 M KCl or 2 M (NH4)2SO4. Some other properties, like autofragmentation under sample treatment before SDS-PAGE, are described. 相似文献
17.
A method has been developed to search for the elongation factor Tu (EF-Tu) domain(s) that interact with elongation factor Ts (EF-Ts). This method is based on the suppression of Escherichia coli EF-Tu-dominant negative mutation K136E, a mutation that exerts its effect by sequestering EF-Ts. We have identified nine single-amino acid- substituted suppression mutations in the region 146-199 of EF-Tu. These mutations are R154C, P168L, A174V, K176E, D181G, E190K, D196G, S197F, and I199V. All suppression mutations but one (R154C) significantly affect EF-Tu's ability to interact with EF-Ts under equilibrium conditions. Moreover, with the exception of mutation A174V, the GDP affinity of EF-Tu appears to be relatively unaffected by these mutations. These results suggest that the domain of residues 154 to 199 on EF-Tu is involved in interacting with EF-Ts. These suppression mutations are also capable of suppressing dominant negative mutants N135D and N135I to various degrees. This suggests that dominant negative mutants N135D and N135I are likely to have the same molecular basis as the K136E mutation. The method we have developed in this study is versatile and can be readily adapted to map other regions of EF-Tu. A model of EF-Ts-catalyzed guanine-nucleotide exchange is discussed. 相似文献
18.
Purification of chloroplast elongation factor Tu and cDNA analysis in tobacco: the existence of two chloroplast elongation factor Tu species 总被引:3,自引:0,他引:3
Yuhko Murayama Tohru Matsubayashi Mamoru Sugita Masahiro Sugiura 《Plant molecular biology》1993,22(5):767-774
We have purified a chloroplast elongation factor Tu (EF-Tu) from tobacco (Nicotiana tabacum) and determined its N-terminal amino acid sequence. Two distinct cDNAs encoding EF-Tu were isolated from a leaf cDNA library of N. sylvestris (the female progenitor of N. tabacum) using an oligonucleotide probe based on the EF-Tu protein sequence. The cDNA sequence and genomic Southern analyses revealed that tobacco chloroplast EF-Tu is encoded by two distinct genes in the nuclear genome of N. sylvestris. We designated the corresponding gene products EF-Tu A and B. The mature polypeptides of EF-Tu A and B are 408 amino acids long and share 95.3% amino acid identity. They show 75–78% amino acid identity with cyanobacterial and chloroplast-encoded EF-Tu species. 相似文献
19.
In Sulfolobus solfataricus the binding of the exchange factor 1beta (SsEF-1beta) to SsEF-1alpha-GDP displaces the nucleotide and the SsEF-1alpha-SsEF-1beta complex is formed. The complex itself is stable, but it dissociates upon the addition of GDP or Gpp(NH)p but not ATP. Since the rate of the formation of the SsEF-1alpha-SsEF-1beta complex is significatively slower than the rate of the nucleotide exchange catalyzed by SsEF-1beta it can be inferred that in vivo the GDP/GTP exchange reaction proceeds via an SsEF-1alpha-SsEF-1beta interaction without involving the formation of a stable binary complex as an intermediate. 相似文献
20.
Intrinsic fluorescence of elongation factor Tu in its complexes with GDP and elongation factor Ts 总被引:1,自引:0,他引:1
The intrinsic fluorescence properties of elongation factor Tu (EF-Tu) in its complexes with GDP and elongation factor Ts (EF-Ts) have been investigated. The emission spectra for both complexes are dominated by the tyrosine contribution upon excitation at 280 nm whereas excitation at 300 nm leads to exclusive emission from the single tryptophan residue (Trp-184) of EF-Tu. The fluorescence lifetime of this tryptophan residue in both complexes was investigated by using a multifrequency phase fluorometer which achieves a broad range of modulation frequencies utilizing the harmonic content of a mode-locked laser. These results indicated a heterogeneous emission with major components near 4.8 ns for both complexes. Quenching experiments on both complexes indicated limited accessibility of the tryptophan residue to acrylamide and virtually no accessibility to iodide ion. The quenching patterns exhibited by EF-Tu-GDP and EF-Tu X EF-Ts were, however, different; both quenchers were more efficient at quenching the emission from the EF-Tu x EF-Ts complex. Steady-state and dynamic polarization measurements revealed limited local mobility for the tryptophan in the EF-Tu x GDP complex whereas formation of the EF-Tu x EF-Ts complex led to a dramatic increase in this local mobility. 相似文献