首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vitro protocol has been developed for direct somatic embryogenesis of zygotic cotyledons from mature sugarbeet (Beta vulgaris L.) embryos. Explants were sequentially cultured on modified Murashige and Skoog (MS) medium supplemented with different combinations of 2,4-D, NAA, BAP and TIBA. Somatic embryogenesis was induced within 4 weeks of culture on embryogenesis induction medium which contained MS medium supplemented with BAP and TIBA. Proliferation of somatic embryos was observed on embryo proliferation medium, which contained MS medium supplemented with BAP and NAA within 4 weeks of culture. Plants were regenerated on hormone free half; strength MS medium containing a low sucrose concentration. With some sugarbeet lines, high frequencies of plant regeneration in excess of 90percnt; were observed. The incorporation of TIBA in the media was essential for successful regeneration.  相似文献   

2.
We established an in vitro plant regeneration system via somatic embryogenesis of Aster scaber, an important source of various biologically active phytochemicals. We examined the callus induction and embryogenic capacities of three explants, including leaves, petioles, and roots, on 25 different media containing different combinations of α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). The optimum concentrations of NAA and BA for the production of embryogenic calli were 5.0 μM and 0.05 μM, respectively. Media containing higher concentrations of auxin and cytokinin (such as 25 μM NAA and 25 μM BA) were suitable for shoot regeneration, especially for leaf-derived calli, which are the most readily available calli and are highly competent. For root induction from regenerated shoots, supplemental auxin and/or cytokinin did not improve rooting, but instead caused unwanted callus induction or retarded growth of regenerated plants. Therefore, plant growth regulator-free medium was preferable for root induction. Normal plants were successfully obtained from calli under the optimized conditions described above. This is the first report of the complete process of in vitro plant regeneration of A. scaber via somatic embryogenesis.  相似文献   

3.
Summary Embryogenic callus was formed from several cultivars of cotton (Gossypium hirsutum L.) when sections of hypocotyl and cotyledon were cultured on medium supplemented with 5 mg/liter 6-(γ, γ-dimethylallyl-amino)-purine (2iP) and 0.1 mg/liter α-naphthaleneacetic acid (NAA) for callus initiation and proliferation, and subcultured on medium supplemented with 5 mg/liter NAA and 0.1 to 1 mg/liter 2iP for embryogenic callus induction. It seems that a high 2iP:auxin ratio is preferred for callus initiation and proliferation, but should be exchanged with a higher NAA:cytokinin ratio before differentiation will occur. Embryogenic calluses were recovered at a frequency of 2 to 85% depending on the cultivar used. Coker cultivars produced embryogenic callus faster and at higher frequencies than other cultivars. Embryogenic callus produced somatic embryos on phytohormone-free medium. This medium was used to maintain and proliferate embryogenic callus for a perid of 18 to 24 mo. Somatic embryos were converted to plants on a lower ionic strength medium supplemented with 0.1 mg/liter gibberellic acid (GA3) and 0.01 mg/liter NAA. Glucose was the only carbohydrate used through all phases of tissue culture and was much better than sucrose, on which phenolic production was very high. High temperature (30° C) and low light intensity (9 μE · m−2 · s−1) were optimal conditions for callus initiation, embryogenic callus induction, and maintenance, whereas lower temperature (25° C) and high light intensity (90 μE · m−2 s−1) were the optimal conditions for somatic embryo maturation, germination, and plantlet development. Plants could be regenerated within 10 to 12 wk in Cokers or 7 to 8 mo. in others.  相似文献   

4.
Leaf discs from olive (Olea europaea L.) grown in vitro and immature zygotic embryos collected at 50, 75, 90 and 105 days after full bloom were tested for their somatic embryogenic capacity. The embryos were grown in half-strength MS medium and half-strength OM medium with BAP combinated with either 2,4-D or NAA. Incubation was either in an initial dark period followed by 16h daylight or in 16h daylight throughout. Somatic embryogenesis, approx. 40%, mostly directly from the embryos, was observed only in 75-day-old embryos in medium containing low cytokinin and auxin concentrations. Differentiation was inhibited by 2,4-D whereas NAA did not. In leaf discs and younger and older zygotic embryos, only callus and root formation was observed. Somatic embryos were germinated and then potted-up to soil.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - NAA naphtaleneacetic acid  相似文献   

5.
Somatic embryos isolated from mature seed-derived cotyledon cultures of cassava (Mannihot esculenta Crantz) underwent direct secondary somatic embryogenesis or plant development under appropriate incubation conditions. Isolated somatic embryos were subjected to a two-stage culture procedure similar to that which induced their development on cotyledon explants. This involved incubation for 24–30 days on Murashige and Skoog basal medium supplemented with 2–8 mgl-1 2,4-dichlorophenoxyacetic acid (2,4-D) (Stage I medium) before transfer to medium supplemented with 0.01 mgl-1 2,4-D and 0.1 mgl-1 6-benzylamino purine (BAP) (Stage II medium). Under these conditions, secondary somatic embryos developed directly from the cotyledons and shoot-tip region of primary somatic embryos by a developmental process morphologically very similar to that occurring on zygotic cotyledon explants. Apical shoot extension and adventitious root formation occurred when somatic embryos were isolated from parental cultures and incubated on Stage II medium. Somatic embryo-derived plants growing in greenhouse conditions appeared morphologically normal when compared with non-regenerated plants.  相似文献   

6.
Callus culture and plant regeneration through somatic embryogenesis have been obtained in Coronilla varia. Media used were UM (25) supplemented with 2 mg/l 2,4-D followed by subculture on MS (18) containing 1 mg/l 2-iP and 0.1 mg/l IAA. Embryoids developed into complete plantlets on filter paper saturated with hormone-free MS medium.  相似文献   

7.
In vitro protocols for plant regeneration of Arachis correntina through both somatic embryogenesis and organogenesis were developed using immature leaves as explants. Morphologically normal somatic embryos were obtained on culture media composed of 20.70 or 41.41 μM picloram (PIC) with the addition of 0.044 μM 6-benzylaminopurine (BA), resulting in a 33 and 24% of conversion into plants, respectively. The source of explants and the developmental stage of the leaves had a marked effect on somatic embryogenesis. The second folded immature leaves from in vitro growing plants were the most responsive producing up to 30% embryogenesis in MS+41.41 μM PIC. Embryos converted into plants after transfer to MS medium devoid of growth regulators and these plants were successfully acclimatised. Adventitious shoots were obtained on culture media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA) with or without 0.044 μM BA, achieving plant regeneration in the induction media. The highest percentage of bud formation was obtained on culture medium composed of␣MS+10.74 μM NAA+0.044 μM BA (12.5%). Roots were formed on all culture media tested. Regenerated plants were transferred to pots and grew well under greenhouse conditions.  相似文献   

8.
Callus cultures with globular proembryogenic structures were induced from zygotic embryos and hypocotyl segments of Cyphomandra betacea on MS medium supplemented with 2,4-D. Proembryogenic structures produced somatic embryos and plantlets on regulator-free basal medium. Pieces of embryogenic callus subcultured on medium with the same original composition gave rise to new globular structures and the potential for plantlet regeneration has been maintained for over a year. The histological examination of these proembryogenic structures suggested that somatic embryos arise from single cells. Regenerated plants are phenotypically normal, having diploid chromosome numbers (2n = 24).  相似文献   

9.
Somatic embryogenesis and plantlet regeneration were achieved from immature and mature zygoticCamellia japonica embryos cultured on Murashige & Skoog's mineral medium without growth regulators or with various combinations of IBA and BAR The dependence of embryogenesis rates on growth regulator levels was not clear, though high concentrations such as 4 mg 1-1BAP plus 2 mg 1-1IBA were definitely inhibitory. BAP at 1 or 2 mg 1-1 did appear to determine the formation of bud-like embryos. By far the most responsive initial explants were immature embryonic axes collected in September, 94% of which produced somatic embryos as against only 20% for embryonic axes from mature seeds collected in October. Cotyledon explants were also embryogenic. Somatic embryos differentiating directly on the hypocotyl of the embryonic axes or the surface of cotyledons passed through typical stages of embryogenesis. Indirect somatic embryogenesis via callus was also evident. Embryogenic potential was maintained by secondary embryogenesis through the successive generations of embryos.  相似文献   

10.
Plant regeneration via somatic embryogenesis in cotton   总被引:6,自引:0,他引:6  
An efficient in vitro plant regeneration system characterized by rapid and continuous production of somatic embryos using leaf and stem explants of abnormal seedling as an explant have been developed in Gossypium hirsutum L. Embryogenic callus and somatic embryos have been obtained directly from the explants of cotton abnormal seedlings. Plant growth regulators influenced the induction of cotton somatic embryogenesis. The optimal medium for direct somatic embryogenesis was modified MS medium supplemented with 0.1 mg l-1 ZT and 2 g l-1 activated carbon. On this medium, an average of 28.0 and 28.1 matured somatic embryos formed from per leaf and stem explants respectively. The highest frequency of somatic embryogenesis was 100%. The somatic embryos were converted into normal plantlets when cultured on modified MS medium supplemented with 0.1 mg l-1 ZT. Upon transfer to soil, plants grew well and appeared normal. Plants could be regenerated within 60–80 days. The system of cotton somatic embryogenesis and plant regeneration described here will facilitate the application of plant tissue culture and genetic engineering on cotton genetic improvement. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Protolasts of Bupleurum scorzonerifolium were prepared from stem node-derived embryogenic calli with an enzyeme mixture, in which snailase was a necessary component. Follolwing cell wall regeneration protoplasts divided and directly formed somatic embryos which developed into plantlets. The conditions favorable to direct embryo formation were investigated, and the nature of the callus used for protoplast preparation was found to be a critical factor. The osmotic concentration and the composition of the culture medium including the phytohormone combinations were also important.  相似文献   

12.
We induced somatic embryogenesis from the cotyledon segments ofOlea europaea (L) cvs. ‘Chetoui’, ‘Chemleli’, and ‘Arbequina’. Calli were established from all three cultvars on OMc media supplemented with IBA and 2i-R The greatest success was obtained with media that contained zero or low concentrations of growth regulators. High levels of hormones (i.e.,>0.5 mgL-1 IBA and 2i-P) inhibited embryogenesis. Embryos at different maturation stages were observed with continuously proliferating secondary embryogenesis. Abnormally shaped embryos and teratoma were also noted. Four weeks was the optimal incubation period for inducing embryogenesis on the auxin-containing medium. In addition, 30 to 40 gL-1 sucrose was more effective than glucose in stimulating the growth and maturation of somatic embryos. Embryogeic efficiency was also higher when multivariate combinations of nitrogen sources (inorganic and organic nitrogen forms) were used. The plantlets that were derived from our germinating somatic embryos were similar to those obtained from axillary buds.  相似文献   

13.
Summary This study was conducted to examine the effect of biotin and thiamine concentrations on callus growth and somatic embryogenesis of date palm (Phoenix dactylifera L.). Embryogenic callus derived from offshoot tip explants was cultured on hormone-free MS medium containing biotin at 0, 0.1, 1, or 2 mg l−1 combined with thiamine at 0.1, 0.5, 2, or 5 mg l−1. Embryogenic callus weight, number of resultant embryos, and embryo length were significantly influenced by thiamine and biotin concentration. The optimum callus growth treatment consisted of 0.5 mg l−1 thiamine and 2 mg l−1 biotin. This treatment also gave the highest number of embryos. Embryo elongation was greatest at 0.5 or 2 mg l−1 thiamine combined with 1 mg l−1 biotin. Embryos from all treatments germinated and regenerants exhibited normal growth in soil. This study provides an insight into the importance of optimizing various culture medium components to overcome in vitro recalcitrace of date palm.  相似文献   

14.
Callus cultures were initiated from apical meristem explants of one to four-week-old aseptically-grown barley (Hordeum vulgare L. cv. Atlas 57) plants. Embryogenic callus and plants were produced in three separate experiments; the cultures have retained regenerative capacity for three years after initiation. Our results demonstrate that explants other than immature embryos are embryogenically competent in barley and that regeneration occurs by both somatic embryogenesis and organogenesis.  相似文献   

15.
To obtain a reproducible efficient procedure for regeneration of rice plants through somatic embryogenesis from callus four published methods of callus induction and regeneration were compared. Callus was initiated from mature embryos of the Japonica cultivar Taipei 309 of rice (Oryza sativa L.). The number, mass and morphology of the callus formed on the scutellum were dependent on the medium used. A limited humidity and an optimal aeration of the culture vessels enhanced the frequency of embryogenesis and plant regeneration. A method described by Poonsapaya et al. (1989) was found to be the most efficient and was slightly modified. As a result 98% of the T309 embryos formed callus, of which 63% regenerated into plants. Each callus yielded an average of 6 plants. Plant morphology, fertility and seed set of the regenerants were found to be normal.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - IAA 3-indole-acetic acid - BA 6-benzyladeninepurine - S.E.M. standard error of mean  相似文献   

16.
In vitro somatic embryogenesis and subsequent plant regeneration was achieved in callus cultures derived from immature zygotic embryos of Acacia arabica on semi-solid Murashige and Skoog (MS) basal salts and vitamins supplemented with 8.88 MBA, 6.78 M2,4-D and 30 g l–1 (w/v) sucrose. Somatic embryos proliferated rapidly by secondary somatic embryogenesis after transfer to MS medium supplemented with 6.66 M BA, 6.78 M 2,4-D. The maximum number of somatic embryos per callus was 72.6 after 8 weeks of culture on medium containing 6.66 M BA and 6.78 M 2,4-D. The isolated somatic embryos germinated on half-strength basal MS salts and vitamins supplemented with 0.04 M BA, 0.94 M ABA and 2% (w/v) sucrose. The embryo-derived plantlets were acclimatized in the greenhouse and subsequently showed normal growth.  相似文献   

17.
Regeneration of subterranean clover (Trifolium subterraneum L.) was achieved by both shoot organogenesis and somatic embryogenesis. Shoots derived via organogenesis were initiated from the hypocotyls of mature imbibed seed. The hypocotyl, including the emerging radicle, was sliced longitudinally into two halves and cultured on shoot induction medium. After 30 days, adventitious shoots were formed from the hypocotyl region while the radicle showed no development. Shoots were then subcultured onto shoot multiplication medium and finally onto a root initiation medium. Histological studies revealed that shoots arose de novo and did not originate from pre-existing meristems. In the second regeneration protocol, shoot apical meristems from young seedlings were induced to form callus. Following four to six weeks culture in the dark, somatic embryos appeared spontaneously on the calli. A majority of embryos had a well-defined root pole, two cotyledonary lobes, and were capable of germination, albeit at a low frequency. Regenerated plants obtained from both protocols appeared phenotypically normal.  相似文献   

18.
Summary Protoplasts were isolated from immature cotyledons of Vigna sinensis and cultured in a modified MS Liquid medium containing 0. 2 mg/l 2, 4-dichlorophenoxyacetic acid (2, 4-D), 1 mg/l naphthaleneacetic acid (NAA) and 0. 5 mg/l 6-benzylaminopurine (BAP) in the dark at a density of 1 × 105/ml. The protoplasts began to divide in 3–5 days. Sustained cell division resulted in formation of cell clusters and small calli, with the cell division frequency and plating efficiency of cell colonies reaching 27. 7% and 1. 7% respectively. When calli of 2 mm in size were transferred onto MSB medium (MS salts and B5 vitamins) containing 500mg/l NaCl, 500 mg/ 1 casein hydrolysate (CH), 2 mg/l 2,4-D and 0. 5 mg/l BAP for further growth, approximately 5% of the calli developed embryogenically. The embryogenic calli were selected and subcultured on the same composition of MSB medium and were able to maintain somatic embryogenesis capacity in subculture for a long time. When the calli were moved to MSB medium with 0. 1 mg/l indole-3-acetic acid (IAA), 0. 5mg/l kinetin(KT), 3–5% mannitol and 2% sucrose in the light, many somatic embryos formed from the calli. Only part of the embryoids developed further to the cotyledonary stage, and the others died at the globular, heart-shaped or torpedo stages. Finally, some cotyledonary embryoids germinated and developed into plants or shoots. The shoots were readily rooted on 1/2 strength MS medium with 0. 1–0.3 mg/l indole-3-butyric acid (IBA). The plants grew well in soil and were fertile.Abbreviations 2, 4-D dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - BAP 6-benzylaminopurine - IAA indole-3-acetic acid - KT kinetin - IBA indole-3-butyric acid - CH casein hydrolysate - CM coconut milk - ZT zeatin  相似文献   

19.
Direct somatic embryogenesis from axes of mature peanut embryos   总被引:2,自引:0,他引:2  
Summary Plant regeneration via somatic embryogenesis was obtained in peanut (Arachis hypogaea L.) from axes of mature zygotic embryos. The area of greatest embryogenic activity was a 2-mm region adjacent to and encircling the epicotyl. Somatic embryogenesis was evaluated on Murashige and Skoog media supplemented with a variety of auxin treatments. Maximum production occurred on medium supplemented with 3 mg · liter−1 4-amino-3,5,6-trichloropicolinic acid. Explant cultures were transferred to half-strength medium supplemented with 1 mg · liter−1 gibberellic acid for somatic embryo germination and early plantlet growth. Plantlets, transferred to soil, were placed in a greenhouse and grown to maturity.  相似文献   

20.
A high-frequency plantlet regeneration protocol was developed for black pepper (Piper nigrum L.) through cyclic secondary somatic embryogenesis. Secondary embryos formed from the radicular end of the primary somatic embryos which were originally derived from micropylar tissues of germinating seeds on growth regulator-free SH medium in the absence of light. The process of secondary embryogenesis continued in a cyclic manner from the root pole of newly formed embryos resulting in clumps of somatic embryos. Strength of the medium and sucrose concentration influenced the process of secondary embryogenesis and fresh weight of somatic embryo clumps. Full-strength SH medium supplemented with 1.5% sucrose produced significantly higher fresh weight and numbers of secondary somatic embryos while 3.0 and 4.5% sucrose in the medium favored further development of proliferated embryos into plantlets. Ontogeny of secondary embryos was established by histological analysis. Secondary embryogenic potential was influenced by the developmental stage of the explanted somatic embryo and stages up to “torpedo” were more suitable. A single-flask system was standardized for proliferation, maturation, germination and conversion of secondary somatic embryos in suspension cultures. The system of cyclic secondary somatic embryogenesis in black pepper described here represents a permanent source of embryogenic material that can be used for genetic manipulations of this crop species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号