共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala 总被引:10,自引:0,他引:10
Certain goal-directed behaviors depend critically upon interactions between orbitofrontal cortex (OFC) and basolateral amygdala (ABL). Here we describe direct neurophysiological evidence of this cooperative function. We recorded from OFC in intact and ABL-lesioned rats learning odor discrimination problems. As rats learned these problems, we found that lesioned rats exhibited marked changes in the information represented in OFC during odor cue sampling. Lesioned rats had fewer cue-selective neurons in OFC after learning; the cue-selective population in lesioned rats did not include neurons that were also responsive in anticipation of the predicted outcome; and the cue-activated representations that remained in lesioned rats were less associative and more often bound to cue identity. The results provide a neural substrate for representing acquired value and features of the predicted outcome during cue sampling, disruption of which could account for deficits in goal-directed behavior after damage to this system. 相似文献
3.
4.
Cremers H van Tol MJ Roelofs K Aleman A Zitman FG van Buchem MA Veltman DJ van der Wee NJ 《PloS one》2011,6(12):e28421
Neuroticism and extraversion are personality factors associated with the vulnerability for developing depression and anxiety disorders, and are possibly differentially related to brain structures implicated in the processing of emotional information and the generation of mood states. To date, studies on brain morphology mainly focused on neuroticism, a dimension primarily related to negative affect, yielding conflicting findings concerning the association with personality, partially due to methodological issues and variable population samples under study. Recently, extraversion, a dimension primarily related to positive affect, has been repeatedly inversely related to with symptoms of depression and anxiety disorders. In the present study, high resolution structural T1-weighted MR images of 65 healthy adults were processed using an optimized Voxel Based Morphometry (VBM) approach. Multiple regression analyses were performed to test for associations of neuroticism and extraversion with prefrontal and subcortical volumes. Orbitofrontal and right amygdala volume were both positively related to extraversion. Extraversion was differentially related to volume of the anterior cingulate cortex in males (positive) and females (negative). Neuroticism scores did not significantly correlate with these brain regions. As extraversion is regarded a protective factor for developing anxiety disorders and depression and has been related to the generation of positive affect, the present results indicate that the reduced likelihood of developing affective disorders in individuals high on extraversion is related to modulation of emotion processing through the orbitofrontal cortex and the amygdala. 相似文献
5.
Can't learn without you: predictive value coding in orbitofrontal cortex requires the basolateral amygdala 总被引:1,自引:0,他引:1
O'Doherty J 《Neuron》2003,39(5):731-733
Basolateral amygdala and orbitofrontal cortex are implicated in cue-outcome learning. In this issue of Neuron, Schoenbaum et al. show that, following basolateral amygdala lesions, cue-selective neurons in orbitofrontal cortex are more sensory driven and less sensitive to the motivational value of an outcome, suggesting that predictive value coding in orbitofrontal cortex is dependent on input from basolateral amygdala. 相似文献
6.
Representation of spatial goals in rat orbitofrontal cortex 总被引:4,自引:0,他引:4
The orbitofrontal cortex (OFC) is thought to participate in making and evaluating goal-directed decisions. In rodents, spatial navigation is a major mode of goal-directed behavior, and anatomical and lesion studies implicate the OFC in spatial processing, but there is little direct evidence for coding of spatial or motor variables. Here, we recorded from ventrolateral and lateral OFC in an odor-cued two-alternative choice task requiring orientation and approach to spatial goal ports. In this context, over half of OFC neurons encoded choice direction or goal port location. A subset of neurons was jointly selective for the trial outcome and port location, information useful for the selection or evaluation of spatial goals. These observations show that the rodent OFC not only encodes information relating to general motivational significance, as shown previously, but also encodes spatiomotor variables needed to define specific behavioral goals and the locomotor actions required to attain them. 相似文献
7.
8.
Firing patterns of neurons in the orbitofrontal cortex (OF) were analyzed in rats trained to perform a task that encouraged incidental associations between distinct odors and the places where their occurrence was detected. Many of the neurons fired differentially when the animals were at a particular location or sampled particular odors. Furthermore, a substantial fraction of the cells exhibited odor-specific firing patterns prior to odor presentation, when the animal arrived at a location associated with that odor. These findings suggest that neurons in the OF encode cross-modal associations between odors and locations within long-term memory. 相似文献
9.
Background
Olfactory abilities are now a flourishing field in psychiatry research. As the orbitofrontal cortex appears to be simultaneously implicated in odour processing and executive impairments, it has been proposed that olfaction could constitute a cognitive marker of psychiatric states. While this assumption appears promising, very few studies have been conducted on this topic among psychopathological populations. The present study thus aimed at exploring the links between olfaction and executive functions. These links were evaluated using two tasks of comparable difficulty, one known to rely on orbitofrontal cortex processing (i.e., a confabulation task), and one not associated with this area (i.e., Stop-Signal task).Methodology/Principal Findings
Twenty recently detoxified alcoholic individuals and twenty paired controls took part in an experiment evaluating olfactory abilities and executive functioning (i.e., Stop-Signal task and confabulation task). Comorbidities and potential biasing variables were also controlled for. Alcoholic individuals exhibited impaired performance for high-level olfactory processing and significant confabulation problems as compared to controls (but no deficit in Stop-Signal task), even when the influence of comorbidities was taken into account. Most importantly, olfactory abilities and confabulation rates were significantly correlated in both groups.Conclusions/Significance
Alcoholism jointly leads to olfactory and memory source impairments, and these two categories of deficits are associated. These results strongly support the proposition that olfactory and confabulation measures both index orbitofrontal functioning, and suggest that olfaction could become a reliable cognitive marker in psychiatric disorders. Moreover, it underlines the need to take into account these olfactory and source memory impairments in a clinical context. 相似文献10.
Given a noisy sensory world, the nervous system integrates perceptual evidence over time to optimize decision-making. Neurophysiological accumulation of sensory information is well-documented in the animal visual system, but how such mechanisms are instantiated in the human brain remains poorly understood. Here we combined psychophysical techniques, drift-diffusion modeling, and functional magnetic resonance imaging (fMRI) to establish that odor evidence integration in the human olfactory system enhances discrimination on a two-alternative forced-choice task. Model-based measures of fMRI brain activity highlighted a ramp-like increase in orbitofrontal cortex (OFC) that peaked at the time of decision, conforming to predictions derived from an integrator model. Combined behavioral and fMRI data further suggest that decision bounds are not fixed but collapse over time, facilitating choice behavior in the presence of low-quality evidence. These data highlight a key role for the orbitofrontal cortex in resolving sensory uncertainty and provide substantiation for accumulator models of human perceptual decision-making. 相似文献
11.
Risky decision-making is altered in humans and animals with damage to the orbitofrontal cortex. However, the cellular function of the intact orbitofrontal cortex in processing information relevant for risky decisions is unknown. We recorded responses of single orbitofrontal neurons while monkeys viewed visual cues representing the key decision parameters, reward risk and value. Risk was defined as the mathematical variance of binary symmetric probability distributions of reward magnitudes; value was defined as non-risky reward magnitude. Monkeys displayed graded behavioral preferences for risky outcomes, as they did for value. A population of orbitofrontal neurons showed a distinctive risk signal: their cues and reward responses covaried monotonically with the variance of the different reward distributions without monotonically coding reward value. Furthermore, a small but statistically significant fraction of risk responses also coded reward value. These risk signals may provide physiological correlates for the role of the orbitofrontal cortex in risk processing. 相似文献
12.
Munar E Nadal M Rosselló J Flexas A Moratti S Maestú F Marty G Cela-Conde CJ 《PloS one》2012,7(6):e38152
It is well established that aesthetic appreciation is related with activity in several different brain regions. The identification of the neural correlates of beauty or liking ratings has been the focus of most prior studies. Not much attention has been directed towards the fact that humans are surrounded by objects that lead them to experience aesthetic indifference or leave them with a negative aesthetic impression. Here we explore the neural substrate of such experiences. Given the neuroimaging techniques that have been used, little is known about the temporal features of such brain activity. By means of magnetoencephalography we registered the moment at which brain activity differed while participants viewed images they considered to be beautiful or not. Results show that the first differential activity appears between 300 and 400 ms after stimulus onset. During this period activity in right lateral orbitofrontal cortex (lOFC) was greater while participants rated visual stimuli as not beautiful than when they rated them as beautiful. We argue that this activity is associated with an initial negative aesthetic impression formation, driven by the relative hedonic value of stimuli regarded as not beautiful. Additionally, our results contribute to the understanding of the nature of the functional roles of the lOFC. 相似文献
13.
The orbitofrontal cortex (OFC) and amygdala are thought to participate in reversal learning, a process in which cue-outcome associations are switched. However, current theories disagree on whether OFC directs reversal learning in the amygdala. Here, we show that during reversal of cues' associations with rewarding and aversive outcomes, neurons that respond preferentially to stimuli predicting aversive events update more quickly in amygdala than OFC; meanwhile, OFC neurons that respond preferentially to reward-predicting stimuli update more quickly than those in the amygdala. After learning, however, OFC consistently differentiates between impending reinforcements with?a shorter latency than the amygdala. Finally, analysis of local field potentials (LFPs) reveals a disproportionate influence of OFC on amygdala that emerges after learning. We propose that reversal learning is supported by complex interactions between neural circuits spanning the amygdala and OFC, rather than directed by any single structure. 相似文献
14.
15.
When interfering objects occlude a scene, the visual system restores the occluded information. Similarly, when a sound of interest (a foreground sound) is interrupted (occluded) by loud noise, the auditory system restores the occluded information. This process, called auditory induction, can be exploited to create a continuity illusion. When a segment of a foreground sound is deleted and loud noise fills the missing portion, listeners incorrectly report hearing the foreground continuing through the noise. Here we reveal the neurophysiological underpinnings of illusory continuity in single-neuron responses from awake macaque monkeys' primary auditory cortex (A1). A1 neurons represented the missing segment of occluded tonal foregrounds by responding to discontinuous foregrounds interrupted by intense noise as if they were responding to the complete foregrounds. By comparison, simulated peripheral responses represented only the noise and not the occluded foreground. The results reveal that many A1 single-neuron responses closely follow the illusory percept. 相似文献
16.
Three-dimensional shape representation in monkey cortex 总被引:7,自引:0,他引:7
Using fMRI in anesthetized monkeys, this study investigates how the primate visual system constructs representations of three-dimensional (3D) shape from a variety of cues. Computer-generated 3D objects defined by shading, random dots, texture elements, or silhouettes were presented either statically or dynamically (rotating). Results suggest that 3D shape representations are highly localized, although widely distributed, in occipital, temporal, parietal, and frontal cortices and may involve common brain regions regardless of shape cue. This distributed network of areas cuts across both "what" and "where" processing streams, reflecting multiple uses for 3D shape representation in perception, recognition, and action. 相似文献
17.
18.
Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex 总被引:6,自引:0,他引:6
Certain goal-directed behaviors depend upon interactions between basolateral amygdala (ABL) and orbitofrontal cortex (OFC). Here we describe neurophysiological evidence of this cooperative function. We recorded from ABL in intact and OFC-lesioned rats during learning of odor discrimination problems and reversals. During learning, rats with ipsilateral OFC lesions exhibited a marked decline in the proportion of ABL neurons that fired differentially during cue sampling both before and after reversal and in the proportion of neurons that reversed odor preference when the odor-outcome associations were reversed. This decline appeared to reflect a loss of rapid flexibility in cue selectivity that characterized activity in intact rats. In addition, lesioned rats had fewer neurons that fired in anticipation of the predicted outcome during a delay period after responding but before outcome delivery. These findings support a role for OFC in facilitating the encoding of information about expected outcomes in ABL. 相似文献
19.
The responses of 3687 neurons in the macaque primary taste cortex in the insula/frontal operculum, orbitofrontal cortex (OFC) and amygdala to oral sensory stimuli reveals principles of representation in these areas. Information about the taste, texture of what is in the mouth (viscosity, fat texture and grittiness, which reflect somatosensory inputs), temperature and capsaicin is represented in all three areas. In the primary taste cortex, taste and viscosity are more likely to activate different neurons, with more convergence onto single neurons particularly in the OFC and amygdala. The different responses of different OFC neurons to different combinations of these oral sensory stimuli potentially provides a basis for different behavioral responses. Consistently, the mean correlations between the representations of the different stimuli provided by the population of OFC neurons were lower (0.71) than for the insula (0.81) and amygdala (0.89). Further, the encoding was more sparse in the OFC (0.67) than in the insula (0.74) and amygdala (0.79). The insular neurons did not respond to olfactory and visual stimuli, with convergence occurring in the OFC and amygdala. Human psychophysics showed that the sensory spaces revealed by multidimensional scaling were similar to those provided by the neurons. 相似文献
20.
V. N. Kazakov 《Neurophysiology》1971,3(5):360-365
The reactions of 164 neurons of the orbitofrontal cortex (OFC) to stimulation of the mediodorsal nucleus of the thalamus (MD), the amygdaloid complex, and various sections of the hypothalamus, were investigated in acute experiments on cats. Stimulation of the MD led to the development in OFC neurons of reactions with a short (sometimes less than 6 msec) and stable latent period. Similar reactions were observed upon stimulation of the lateral amygdaloid nuclei. Stimulation of the basal and central nuclei of the amygdala evoked synchronization of the discharges in OFC neurons. Stable responses of OFC neurons developed from nuclei of the hypothalamus only in the lateral region. Stimulation of the other nuclei of the hypothalamus was accompanied by irregular responses or synchronization of the discharges. In an analysis of the material obtained, the functional characteristics of the connections between the structures investigated and OFC neurons were examined.State Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 484–490, September–October, 1971. 相似文献