首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The 4F2 antigenic complex is expressed on most human cell lines in culture, on monocytes and activated lymphocytes, but not on resting T and B lymphocytes. Monoclonal antibody (mAb) CB43 recognizes an epitope of the 4F2 heterodimer either located on the light chain or dependent on the conformation of the molecule. The binding of CB43 mAb to peripheral blood mononuclear cells (PBMC) induced a dose-dependent comitogenic effect in the presence of submitogenic concentrations of anti-CD3 mAb. Significant amounts of interleukin (IL)-1 beta but not IL-2 or interferon-gamma were released in the supernatant. Pretreatment of monocytes with CB43 mAb increased the phytohemagglutinin-induced T lymphocyte proliferation. However, CB43 mAb did not exert agonistic effects on activated T lymphocytes. Depletion of CB43+ cells from PBMC decreased the proliferation and generation of cytotoxic effector cells induced by a mannoprotein (MP) derived from Candida albicans cell wall but not by recombinant IL-2. Furthermore, depletion of CB43+ cells from PBMC preactivated with MP or rIL-2 led to a significant decrease in their cytotoxic activity. CB43 mAb did not inhibit the growth of cell lines nor the proliferation of T cells. Thus CB43 mAb identifies a distinct functional epitope on the 4F2 molecular complex and might be useful in further studying the role of this molecule in cellular activation.  相似文献   

2.
We investigated the effect of polymorphonuclear neutrophils (PMN) on anti-CD3 mAb (OKT3 and anti-Leu4)-mediated T cell activation. In the absence of monocytes, purified E-rosette-positive cells (further referred to as "T cells") require either solid-phase bound anti-CD3 or the combination of both a high concentration of soluble anti-CD3 and exogenous recombinant interleukin 2 (rIL-2) to proliferate. PMN cannot sustain T cell proliferation with soluble anti-CD3, but they markedly boost proliferation in the presence of soluble anti-CD3 and rIL-2. When PMN were added to T cell cultures stimulated with anti-CD3, this resulted in IL-2 receptor (IL-2R) expression and CD3 modulation. The mechanism of enhancement of anti-CD3-induced IL-2-responsiveness by PMN was further analyzed. A cellular T cell-PMN interaction was found to play a critical role and this was mediated through PMN Fc receptors (FcR). PMN bear two types of low-affinity FcR (FcRII and FcRIII). FcRII is known to bind mIgG1 (e.g., anti-Leu4) and FcRIII binds mIgG2a (e.g., OKT3). FcR involvement was demonstrated by two observations. Anti-FcRII mAb IV.3 inhibited the PMN signal for T cell activation with anti-Leu4. PMN bearing the second variant of FcRII which is unable to bind mIgG1 failed to promote anti-Leu4/IL-2-mediated T cell proliferation. Thus, PMN potentiate T cell responsiveness to IL-2 in the presence of anti-CD3 mAb and this potentiation by PMN requires interaction of anti-CD3 with PMN-FcR.  相似文献   

3.
CD28 is an antigen of 44 kDa which is expressed on the membrane of the majority of human T cells. The present study examines the functional effects of an anti-CD28 monoclonal antibody (mAb 9.3) on T cell activation induced with immobilized anti-CD3 mAb OKT3 or with mitogens, in the absence of accessory cells. To this end, we used blood resting T cells that were completely depleted of accessory cells (monocytes, B cells, and natural killer cells), and consequently did not respond to recombinant interleukin-2 (rIL-2), to immobilized OKT3, to PHA, or to Con A. Addition of mAb 9.3 to the cultures enhanced IL-2 receptor expression (Tac antigen) on PHA- or immobilized OKT3-stimulated T cells and induced IL-2 receptors on Con A-stimulated T cells. Moreover, addition of mAb 9.3 to cultures of T cells stimulated with PHA, Con A, or immobilized OKT3 resulted in IL-2 production. Soluble mAb 9.3 was a sufficient helper signal for T cell proliferation in response to PHA or immobilized OKT3. Crosslinking of mAb 9.3 by culture on anti-mouse IgG-coated plates enhanced the helper effect and was an essential requirement for the induction of T cell proliferation in response to Con A. No other anti-T cell mAb (anti-CD2, -CD4, -CD5, -CD7, -CD8) was found to provide a complete accessory signal for PHA or Con A stimulation of purified T cells. T cell proliferation induced by the combination of PHA and mAb 9.3 was strongly inhibited by the anti-IL-2 receptor mAb anti-Tac. In conclusion, mAb 9.3 can provide a signal bypassing monocyte requirement in T cell activation with immobilized OKT3, PHA, and Con A, resulting in an autocrine IL-2-dependent pathway of proliferation.  相似文献   

4.
Thymic peptide factors are known to modulate proliferation of normal human lymphocytes. In this work, we studied the effect of Prothymosin alpha (Pro alpha) on PHA-stimulated PBMC and PBLC. The observed effects of Pro alpha and thymosin alpha 1 (alpha 1) on PBMC were found to depend on the degree of cell stimulation, dose, and preincubation-time. Thymosin beta 4 (beta 4) had no effect on either cell type, regardless of the degree of stimulation, which shows that beta 4 may be used as a control peptide to work in this area. Induction of lymphoproliferation also depended on the presence of macrophages. Addition of monocytes or a cell-free monocyte culture supernatant (not containing IL-2) to the PHA-stimulated PBLC cultures resulted in T cell proliferation. Although IL-1 could not restore the PHA-induced proliferative response of isolated T cells by itself, it would enhance the helper effect of Pro alpha. Moreover, a polyclonal goat anti-human IL-2R (Tac Ag) did block the proliferative response induced by combined rIL-1 and Pro alpha, suggesting that an IL-2-dependent pathway of T cell proliferation was involved.  相似文献   

5.
The capacity of PGE2 to inhibit human T cell responses was examined by investigating its effect on mitogen-induced IL-2 production and proliferation of highly purified CD4+ T cells. PGE2 inhibited both PHA and anti-CD3 induced proliferation and IL-2 production by an action directly on the responding T cell. Inhibition of IL-2 production reflected decreased accumulation of mRNA for IL-2. A variety of other cAMP elevating agents exerted similar inhibitory effects. Inhibition of proliferation could be overcome by supplemental IL-2, PMA, or the anti-CD28 mAb 9.3. Although PMA and 9.3 markedly increased the amount of IL-2 produced by mitogen-stimulated T cells, the percentage inhibition of IL-2 secretion caused by PGE2 and other cAMP elevating agents remained comparable in these costimulated cultures. Rescue of T cell DNA synthesis by these agents appeared to reflect the finding that, although PGE2 markedly inhibited IL-2 production, the absolute amount of IL-2 produced was increased sufficiently to sustain mitogen-induced proliferation. As anticipated, PGE2, forskolin, and cholera toxin increased T cell cAMP levels. The quantity of cellular cAMP generated in response to PGE2, cholera toxin, and forskolin could be inhibited by PMA or 2',5'-dideoxyadenosine. Using these reagents, the inhibitory effects of PGE2 were found to reflect intracellular cAMP levels, but only within a very narrow range. The results indicate that by elevating cAMP levels, PGE2 inhibits human T cell IL-2 production at a point that is common to both the CD3 and CD28 signaling pathways.  相似文献   

6.
CD28 is an Ag of 44-kDa Mr that is expressed on the membrane of the majority of human T cells and that is recognized by mAb 9.3. The functional effects of mAb 9.3 on peripheral blood T cells were studied. mAb 9.3 was not mitogenic, unless it was combined with PMA. When CD28 was cross-linked after binding of mAb 9.3 to the T cell by immobilized or soluble anti-mouse IgG, T cells proliferated in response to rIL-2, provided that monocytes were also present. The additional signal required for IL-2 responsiveness after cross-linking of CD28 could also be delivered in cultures of purified T cells by a cellfree monocyte culture supernatant. Expression of IL-2R on about 10% of the T cells was demonstrated by staining with an anti-IL-2R mAb, and was found to be largely restricted to CD4+ cells. The active compound responsible for the helper signal in the monocyte culture supernatant was identified as IL-6 because purified IL-6 (but not IL-1 beta) had similar activity and because an antiserum to IL-6 (but not an antiserum to IL-1 beta) neutralized the activity of the monocyte supernatant and blocked T cell proliferation. An anti-IL-2R antibody also completely inhibited T cell proliferation induced by the combination of mAb 9.3, IL-2, and IL-6. Our results provide evidence that cross-linking of CD28 induces functional IL-2R and that this activity is dependent on a helper signal provided by monocytes, more specifically IL-6. Moreover, our results indicate that IL-6 (previously called B cell stimulatory factor-2) is active on T cells. If a natural ligand for CD28 can be identified, the mechanism of induction of IL-2 responsiveness described here might explain how T cells become nonspecifically involved in an ongoing cellular immune reaction.  相似文献   

7.
Immunodeficient patients with severe burn injuries are extremely susceptible to infection with Candida albicans. In addition to Th1 cells, IL-17-producing CD4(+) T cells (Th17 cells) have recently been described as an important effector cell in host anti-Candida resistance. In this study, therefore, we tried to induce Th17 cells in cultures of severely burned patient PBMC by stimulation with the C. albicans Ag (CAg). In the results, the biomarkers for Th17 cells (IL-17 production and intracellular expression of IL-17 and retinoic acid receptor-related orphan receptor γt) were not displayed by burn patient PBMC stimulated with CAg, whereas these biomarkers of Th17 cells were detected in cultures of healthy donor PBMC stimulated with CAg. Burn patient sera were shown to be inhibitory on CAg-stimulated Th17 cell generation in healthy donor PBMC cultures; however, Th17 cells were induced by CAg in healthy donor PBMC cultures supplemented with burn patient sera that were previously treated with anti-IL-10 mAb. Also, the biomarkers of Th17 cells were not induced by CAg in healthy donor PBMC cultures supplemented with rIL-10. IL-10 was detected in serum specimens derived from severely burned patients. These results indicate that Th17 cells are not generated in burn patient PBMC cultures supplemented with CAg. IL-10, produced in response to burn injuries, is shown to be inhibitory on Th17 cell generation. The high susceptibility of severely burned patients to C. albicans infection might be influenced if burn-associated IL-10 production is intervened.  相似文献   

8.
The role of tumor necrosis factor-alpha (TNF-alpha) in human B cell responses was examined and compared with that of interleukin (IL) 1 by assessing the ability of each cytokine to support proliferation and differentiation. Recombinant TNF-alpha (rTNF-alpha) and recombinant IL-1 (rIL-1) each enhanced the generation of immunoglobulin-secreting cells (ISC) in cultures of pokeweed mitogen-stimulated B cells incubated with T cells. To examine the direct effect of rTNF-alpha and rIL-1 on the responding B cell, highly purified peripheral blood B cells were stimulated with Cowan I Staphylococcus aureus (SA). In the absence of T cell factors, proliferation was minimal and there was no generation of ISC. Recombinant IL-2 (rIL-2) supported both responses. Although rTNF-alpha alone did not support SA-stimulated generation of ISC, it did increase SA-stimulated B cell DNA synthesis by two- to eightfold. In addition, rTNF-alpha augmented B cell proliferation in rIL-2 supported SA-stimulated cultures. Moreover, rTNF-alpha enhanced the generation of ISC stimulated by rIL-2 alone or rIL-2 and SA. rIL-1 also augmented DNA synthesis and generation of ISC by B cells stimulated with SA and rIL-2. However, rTNF-alpha enhanced proliferation and ISC generation in SA + rIL-2-stimulated cultures even when they were supplemented with saturating concentrations of rIL-1. Utilizing a two-stage culture system, it was found that the major effect of rTNF-alpha was to enhance responsiveness of SA-activated B cells to rIL-2, whereas it exerted only a minimal effect during initial stimulation. These results indicate that TNF-alpha as well as IL-1 augment B cell responsiveness. Moreover, the ability of rTNF-alpha to enhance B cell responsiveness was not an indirect effect resulting from the induction of Il-1 production by contaminating monocytes, but rather resulted from the delivery of a signal by rTNF-alpha directly to the responding B cell that promoted both proliferation and differentiation after initial activation. The data therefore indicate that human B cell responsiveness can be independently regulated by the action of two separate monocyte-derived cytokines.  相似文献   

9.
Interleukin 2 up-regulates its own production   总被引:2,自引:0,他引:2  
It has been previously reported that a combination pair of anti-CD2 monoclonal antibodies (mAb) T11(2)+T11(3) induces a strong proliferation of T cells, which does not require the involvement of accessory cells and exogenous interleukin 2 (IL-2). More recently, we have shown that the requirement for optimal T cell proliferation depends on the combination pairs of anti-CD2 mAb used. Among them, anti-GT2+T11(1) mAb do not allow optimal proliferation of TA4 helper cloned T cells due, at least in part, to a low level of IL-2 production. This observation offered us the opportunity to study the effect of IL-2 on its own production. We show here that stimulation of cloned TA4 cells with anti-GT2+T11(1) mAb induces only a marginal level of IL-2 production. By contrast, significantly higher levels of IL-2 activity are detected in the culture supernatant of TA4 cells preincubated with recombinant IL-2 (rIL-2) before stimulation with anti-GT2+T11(1) mAb. This effect is dose-dependent over a wide range (5 to 50 IU/ml) of rIL-2 concentrations added during preincubation time. In addition, it is not due to carryover of rIL-2 bound during the preincubation time, or to lesser IL-2 consumption by these cells, or to increasing numbers of IL-2-producing cells induced by exogenous IL-2. Moreover, the observation was confirmed with IL-2 mRNA. Although neither rIL-2 nor anti-GT2+T11(1) mAb alone could induce a significant production of IL-2, rIL-2 appears to up-regulate its own production when the TA4 cells are activated by the anti-CD2 mAb-mediated second signal.  相似文献   

10.
We produced an IgM mAb termed 4.9 against an EBV-containing lymphoblastoid cell line, termed 3B6. This mAb reacted with both various B and T cell lines such as HSB2 cells, with an NK-like cell line YT-C3 cells, and with human fibroblast MCR-5 cells. It also reacted with normal resting peripheral B lymphocytes, monocytes, and anti-CD2- or anti-CD3-activated T lymphocytes. The 4.9 mAb immunoprecipitated two bands estimated to be of Mr 68 and 75 kDa from iodinated 3B6 cells. The 4.9 mAb inhibited the proliferation of peripheral T lymphocytes induced either by anti-CD3 mAb or anti-CD2 mAb. The 4.9 mAb inhibited also the proliferation of murine thymocytes both in the presence of PHA and IL-1 and the proliferation of human fibroblasts in the presence of IL-1. Radiolabeled IL-1 binding on 3B6 cells revealed two types of IL-1 binding sites with high and low affinity for IL-1 (300 sites/cell with a Kd of 6 x 10(-11)M and 6000 sites/cell with a Kd of 3 x 10(-9)M). On both 3B6 and YT-C3 cells, mAb 4.9 inhibited specifically the binding of 125I-labeled rIL-1, alpha or beta, whereas the irrelevant IgM mAb did not. Conversely, rIL-1, alpha or beta, could inhibit specifically the binding of radioiodinated 4.9 mAb to 3B6 or YT-C3 cells, whereas rIL-2, rIFN, or the irrelevant IgM mAb were ineffective. 125I-4.9 mAb bound 3B6 cells with an association constant (Ka) of 2 x 10(8)/M and demonstrated 6000 binding sites/cell. We thus conclude that mAb 4.9 recognizes a protein complex (68 to 75 kDa) closely associated with the IL-1R.  相似文献   

11.
The mitogenic activity of anti-CD3 mouse monoclonal antibodies (mAb) in cultures of human peripheral blood mononuclear cells (PBMC) depends on the ability of the mAb to interact with CD3 molecules on the T cells, and with Fc receptors (FcR) on monocytes. Two types of FcR with distinct specificity for murine (m) IgG subclasses are involved: a 72-kDa receptor (FcRI) binds mIgG2a and a 40-kDa receptor (FcRII) binds mIgG1. In this study we examined the mitogenic activity of mIgG3 anti-CD3 mAb RIV9. In cultures of human PBMC, the mAb induced T cell proliferation and interleukin 2 production. We found that subjects, unresponsive to mIgG2a anti-CD3 (e.g., OKT3), were also RIV9 nonresponders. In contrast, nonresponders to mIgG1 anti-CD3 (e.g., anti-Leu4) had a normal response to RIV9. Our results therefore suggested that anti-CD3 mAb of the mIgG2a and mIgG3 subclass bind to the same monocytic FcR. Human monomeric IgG, which has been shown to bind to FcRI only, blocked T cell proliferation induced by mIgG2a and mIgG3 anti-CD3, but had no effect on T cell proliferation induced by mIgG1 anti-CD3. In contrast, a mAb (IV.3) to FcRII, which blocks ligand binding of the receptor, blocked the mitogenic activity of mIgG1 anti-CD3 antibodies, but had no effect on T cell proliferation induced by mIgG3 anti-CD3 or by mIgG2a anti-CD3. Binding of RIV9 to FcR of responder monocytes could be demonstrated in immunofluorescence. Monocytes from the RIV9 nonresponder subjects however were unable to bind the Fc portion of this antibody. The binding of fluorescein (FITC)-conjugated mIgG3 or FITC-conjugated mIgG2a to responder monocytes could be inhibited by human monomeric IgG and by mIgG2a and mIgG3, but not by the mAb to FcRII. The results demonstrate that mIgG3 binds to FcRI on human monocytes and that this binding is needed for the mitogenic activity of mIgG3 anti-CD3.  相似文献   

12.
A study was carried out on cord blood T cell activation via the CD2-mediated pathway. Despite similar percentages of circulating CD3+ and CD2+ cells in adult and cord blood, the proliferation of cord PBMC to the anti-CD3 mAb and cord T cells to anti-CD2 mAb were defective. The T cell CD3-surface structure was normally able to control CD2-mediated activation, as its modulation by a non-mitogenic anti-CD3 mAb blocked cord PBMC proliferation induced by anti-CD2 mAb. CD2-stimulated cord T cells did not proliferate and did not produce a significant amount of IL-2 in culture, although they expressed the IL-2R. This observation was confirmed by the optimal proliferation of CD2-induced cord T cells when rIL-2 was added. Despite the alternative T cell activation pathway is monocyte-independent in adults, the defective cord T cell activation via the CD2 molecule could also be bypassed by the addition of PMA, small amounts of either autologous or allogeneic adult and cord AC or simply rIL-1 alone. Our findings provide evidence for an intrinsic functional defect in cord CD2-mediated T cell activation, which is linked to an impaired increase of free cytoplasmic calcium, as confirmed by the effectiveness of calcium ionophore A23187 in restoring a good CD2-induced cord T cell proliferation and by measurement of cellular calcium uptake after activation via the CD2 molecule. The characteristics of cord T cells revealed by this study recall the thymocyte functional pattern and may represent functional expression of the previously described phenotypic immaturity of cord T cells.  相似文献   

13.
Staphylococcus enterotoxins and toxic shock syndrome toxin 1 are members of a family of exoproteins that are produced by staphylococci and bind specifically to MHC class II molecules. Upon binding to MHC class II molecules, these exoproteins are potent stimulators of T cell proliferation via interaction with specific TCR V-beta segments of both CD4+ and CD8+ T cells. These exoproteins also directly stimulate monocytes to secrete IL-1 and TNF-alpha. Furthermore, these exoproteins have a profound inhibitory effect on Ig production by PBMC. We examined the effects of Staphylococcus enterotoxin A (SEA) on proliferation and Ig production of highly purified human B cells. Our results demonstrated that the binding of SEA to MHC class II molecules on B cells does not alter their ability to proliferate in response to Staphylococcus aureus Cowan strain I (SAC) or to produce Ig in response to SAC plus rIL-2. In contrast, the anti-DR mAb L243 inhibited both B cell proliferation and Ig production. Unable to determine a direct effect of SEA on B cell function, we investigated whether the capacity of SEA to inhibit SAC-induced Ig production by PBMC was T cell-dependent. Our results demonstrated that in the presence of T cells, under appropriate conditions, SEA can either function as a nominal Ag for stimulation of B cell proliferation and Ig production or induce T cell-mediated suppression of Ig production. SEA-induced Ig production required T cell help, which was dependent on pretreatment of the T cells with irradiation or mitomycin C; Ig production was not induced by SEA in the absence of T cells or in the presence of untreated T cells. Furthermore, SEA inhibited Ig production in SAC-stimulated cultures of autologous B cells and untreated T cells; pretreatment of the T cells with irradiation or mitomycin C abrogated SEA-induced inhibition of Ig production. Thus, T cell suppression of SAC-induced Ig production was dependent on T cell proliferation. Similar results were observed with both SEA and toxic shock syndrome toxin 1.  相似文献   

14.
The role of CD7, a T cell differentiation antigen, in T cell function is not known at present; this study evaluates the effect of anti-CD7 mAb in PMBC cultures activated with suboptimal concentrations of lectins, antigens, and anti-CD3 mAb. We found that the inclusion of anti-CD7 resulted in increased IL-2 production and IL-2R-alpha expression in these cultures. H-7, a protein kinase C (PKC) inhibitor, and genistein, a protein tyrosine kinase (PTK) inhibitor, significantly suppressed the proliferation of T cells in comitogenic assays. This suggested that the comitogenic effect mediated by CD7 molecule involved both the PKC and the PTK pathways of T cell activation. These drugs appeared to affect the CD7-mediated effects by inhibiting the IL-2 autocrine pathway, especially the up-regulation of IL-2R-alpha since inhibition was not relieved with exogenous rIL-2. Taken together, our results suggest that CD7 augments T cell function by up-regulating IL-2R-alpha expression and IL-2 production via multiple pathways of protein phosphorylation.  相似文献   

15.
A biphasic dose response curve was observed when the bone marrow-derived cell line FDCP1, used as an indicator line for IL-3 bioassays, was exposed to supernatants from some activated T cell clones but not others. The active component which inhibited proliferation at the higher supernatant concentrations appeared to be IFN-gamma, based on the following observations. 1) Only those culture supernatants which contained IFN-gamma gave a biphasic dose response curve; 2) with these supernatants, an anti-IFN-gamma mAb augmented the proliferation of FDCP1 cells at the higher supernatant concentrations; and 3) rIFN-gamma profoundly inhibited the proliferation of FDCP1 cells stimulated with rIL-3 or rIL-4. rTNF-alpha inhibited FDCP1 proliferation only to a modest extent, yet the combination of rTNF-alpha + rIFN-gamma provided greater inhibition than each agent alone. The proliferation of a second bone marrow-derived cell line, DA1, was not inhibited by rIFN-gamma or rIFN-gamma + rTNF-alpha when stimulated with rIL-3 or recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF). Fresh bone marrow cells also showed a suboptimal proliferative response when stimulated with T cell supernatants containing IFN-gamma, and this response was augmented considerably upon the addition of anti-IFN-gamma mAb. Bone marrow cell proliferation was observed upon exposure to rIL-3, rIL-4, or rGM-CSF, and these responses were inhibited by rIFN-gamma; rTNF-alpha also produced a synergistic effect with these cells. Bone marrow cell colony formation stimulated by rIL-3 or rGM-CSF also was inhibited by rIFN-gamma. Colony formation in bone marrow cell cultures was not observed in response to rIL-4. Collectively, these results suggest that Th1 cells, which in addition to IL-3 and GM-CSF also produce IFN-gamma, may regulate hemopoietic cell proliferation and colony formation differently from the way Th2 cells do, which do not produce IFN-gamma.  相似文献   

16.
We have analyzed activation of resting human T cells by anti-T cell receptor (TCR) monoclonal antibody (mAb) BMA031, a murine mAb of the G2b isotype. Human peripheral blood lymphocytes (PBL) respond to anti-TCR mAb by short-term proliferation in vitro and by acquisition of responsiveness to interleukin 2 (rIL-2) in the absence of detectable IL-2 production. Cell depletion and limiting dilution experiments indicate that anti-TCR mAb +/- rIL-2 stimulation covers a substantial portion of human T cells, including CD4+ and CD8+ cells. Enhancement by rIL-2 of anti-TCR mAb-induced proliferation is blocked by anti-IL-2 receptor (IL-2R, p55) mAb, while anti-TCR mAb-induced proliferation is not. In contrast, anti-TCR mAb-induced proliferation is blocked by anti-lymphocyte function antigen 1 (LFA-1, CD11a) mAb and is not demonstrable in PBL from two patients with severe congenital LFA-1 deficiency, not even in the presence of irradiated LFA-1+ PBL. We conclude that stimulation of resting human T cells by anti-TCR mAb BMA031 enables dissociation of distinct steps in T cell activation that specifically require participation of IL-2R (p55) and LFA-1 cell surface molecules in a mutually exclusive way.  相似文献   

17.
We have previously described a molecule on the SRBC surface which, in addition to the sheep equivalent of LFA-3, is involved in the process of rosette formation. It is made of a single, 14- to 19-kDa, polypeptide chain, and we termed this molecule S14. We have now identified, on the human E a molecule with a similar Mr albeit somewhat higher (19 kDa). The mAb against H19 efficiently block autologous or homologous rosettes by binding to human E. In addition, purified H19 molecules block rosettes made with human E and SRBC in a dose-dependent manner. The H19 molecule, like LFA-3, is not limited to the E surface, but is also present on many nucleated cells, including T cells and monocytes. Moreover H19, like LFA-3, is required for T cell activation: when we stimulated whole PBMC anti-H19 blocked [H3]TdR incorporation triggered via CD3, but not via CD2, in contrast to anti-LFA-3 that inhibited activation via both pathways. When a mixture of highly purified T-PBL and autologous paraformaldehyde fixed accessory cells (AC) was cultivated, anti-H19 or anti-LFA-3 mAb bound to AC blocked T cell proliferation. When high amounts of rIL-1 (100 U/ml) were added to purified T-PBL, no AC were required to sustain their proliferation upon stimulation via CD2, contrary to stimulation via CD3. When lower amounts of rIL-1 (10 U/ml) were used, fixed AC were still necessary to sustain proliferation via CD2. In this latter situation, anti-H19 mAb bound to AC could no longer inhibit T cell proliferation, whereas the anti-LFA-3 mAb was still inhibitory. When T-PBL were stimulated via CD2 in the presence of 100 U/ml of rIL-1, anti-LFA-3 did not induce any inhibition. Thus the inhibitory effect of anti-H19 and anti-LFA-3 mAb can both be accounted for by an effect on the AC molecules only, and not on the T cell molecules. F(ab')2 fragments of anti-H19 mAb produced the same pattern of inhibition as the whole Ig molecule, excluding an effect via the FcR. Moreover, purified preparations of the H19 molecules also produced inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We have recently shown that engagement of the human monocytic Ag CD14 by murine mAb induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1-dependent homotypic adhesion. To determine whether CD14 plays a role in monocyte-T cell interactions, we tested the effect of anti-CD14 mAb on the proliferation of human T cells. Our results show that anti-CD14 mAb strongly inhibited T cell proliferation induced by Ag, anti-CD3 mAb, and mitogenic lectins. Inhibition by anti-CD14 mAb was epitope-dependent and required physical contact between monocytes and T cells. CD14 engagement did not affect IL-2R expression or IL-2 synthesis but induced a state of unresponsiveness that was not IL-2 specific; proliferation of anti-CD3-activated T cell blasts in response to both IL-2 and IL-4 was abrogated by addition of monocytes preincubated with anti-CD14 mAb. Inhibition of T cell proliferation after engagement of CD14 on monocytes was likely to result from delivery of a negative signal to T cells, rather than from disruption of a costimulatory monocyte-derived signal, because incubation of monocytes with anti-CD14 mAb also inhibited monocyte-independent T cell proliferation induced by PMA and ionophore. These results, together, point to a role of CD14 in the monocyte-dependent regulation of T cell proliferation.  相似文献   

19.
IL-21 is a cytokine produced by CD4+ T cells that has been reported to regulate human, as well as, mouse T and NK cell function and to inhibit Ag-induced IgE production by mouse B cells. In the present study, we show that human rIL-21 strongly enhances IgE production by both CD19+ CD27- naive, and CD19+ CD27+ memory B cells, stimulated with anti-CD40 mAb and rIL-4 and that it promotes the proliferative responses of these cells. However, rIL-21 does not significantly affect anti-CD40 mAb and rIL-4-induced Cepsilon promoter activation in a gene reporter assay, nor germline Cepsilon mRNA expression in purified human spleen or peripheral blood B cells. In contrast, rIL-21 inhibits rIL-4-induced IgE production in cultures of PBMC or total splenocytes by an IFN-gamma-dependent mechanism. The presence of a polymorphism (T-83C), in donors heterozygous for this mutation was found to be associated not only with lower rIL-21-induced IFN-gamma production levels, but also with a lower sensitivity to the inhibitory effects of IL-21 on the production of IgE, compared with those in donors expressing the wild-type IL-21R. Taken together, these results show that IL-21 differentially regulates IL-4-induced human IgE production, via its growth- and differentiation-promoting capacities on isotype-, including IgE-, committed B cells, as well as via its ability to induce IFN-gamma production, most likely by T and NK cells, whereas the outcome of these IL-21-mediated effects is dependent on the presence of a polymorphism in the IL-21R.  相似文献   

20.
Corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) stimulate the secretion of beta-endorphin by human PBMC. It is shown here that peripheral blood B cells are responsible for the production of beta-endorphin after culture with CRF and AVP. The presence of CD14+ monocytes is, however, a prerequisite for the enhancing activity of CRF and AVP. The data presented here show that rIL-1 beta can replace CRF and AVP, whereas a mAb directed against IL-1 abrogates the response to CRF and AVP. These results indicate that IL-1 mediates the effect of CRF and AVP on beta-endorphin production by human PBMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号