首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Letting lipids go: hormone-sensitive lipase   总被引:6,自引:0,他引:6  
PURPOSE OF REVIEW: Despite their pathophysiological importance, the molecular mechanisms and enzymatic components of lipid mobilization from intracellular storage compartments are insufficiently understood. The aim of this review is to evaluate the role of hormone-sensitive lipase in this process. RECENT FINDINGS: Hormone-sensitive lipase exhibits a broad specificity for lipid substrates such as triglycerides, diglycerides, cholesteryl esters, and retinyl esters and the enzyme is in a wide variety of tissues. The high enzyme activity in adipose tissue was considered rate-limiting in the degradation of stored triglycerides. This view of a single enzyme controlling the catabolism of stored fat was challenged by recent findings that in hormone-sensitive lipase deficient mice adipose tissue triglycerides were still hydrolyzed and that these animals were leaner than normal mice. These results indicated that in adipose tissue hormone-sensitive lipase cooperates with other yet unidentified lipases to control the mobilization of fatty acids from cellular depots and that this process is coordinately regulated with lipid synthesis. Induced mutant mouse lines that overexpress or lack hormone-sensitive lipase also provided evidence that hormone-sensitive lipase-mediated cholesteryl ester hydrolysis is involved in steroid-hormone production in adrenals and affects testis function. Finally, hormone-sensitive lipase deficiency in mice results in a lipoprotein profile characterized by low triglyceride and VLDL levels and increased HDL cholesterol concentrations. SUMMARY: The 'anti-atherosclerotic' plasma lipoprotein profile and the fact that hormone-sensitive lipase deficient animals become lean identifies the inhibition of hormone-sensitive lipase as a potential target for the treatment of lipid disorders and obesity.  相似文献   

2.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis.  相似文献   

3.
Hormone-sensitive lipase (HSL) is expressed predominantly in white and brown adipose tissue where it is believed to play a crucial role in the lipolysis of stored triglycerides (TG), thereby providing the body with energy substrate in the form of free fatty acids (FFA). From in vitro assays, HSL is known to hydrolyze TG, diglycerides (DG), cholesteryl esters, and retinyl esters. In the current study we have generated HSL knock-out mice and demonstrate three lines of evidence that HSL is instrumental in the catabolism of DG in vivo. First, HSL deficiency in mice causes the accumulation of DG in white adipose tissue, brown adipose tissue, skeletal muscle, cardiac muscle, and testis. Second, when tissue extracts were used in an in vitro lipase assay, a reduced FFA release and the accumulation of DG was observed in HSL knock-out mice which did not occur when tissue extracts from control mice were used. Third, in vitro lipolysis experiments with HSL-deficient fat pads demonstrated that the isoproterenol-stimulated release of FFA was decreased and DG accumulated intracellularly resulting in the essential absence of the isoproterenol-stimulated glycerol formation typically observed in control fat pads. Additionally, the absence of HSL in white adipose tissue caused a shift of the fatty acid composition of the TG moiety toward increased long chain fatty acids implying a substrate specificity of the enzyme in vivo. From these in vivo results we conclude that HSL is the rate-limiting enzyme for the cellular catabolism of DG in adipose tissue and muscle.  相似文献   

4.
We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans.  相似文献   

5.
Lipid storage and breakdown is mainly controlled by lipoprotein lipase and hormone-sensitive lipase. The aim of this work was to elucidate whether growth hormone mediated loss of adipose tissue involves a concerted action on tissue lipases, and to what degree such events are modulated by dietary regimen. Twelve-month-old rats fed first a high-fat diet or a low-fat diet for 14 weeks were injected with saline or growth hormone (4 mg/kg/d) for four days or three weeks in different combinations with either high- or low-fat diets. In adipose tissue, growth hormone generally inhibited lipoprotein lipase and also attenuated the inhibiting effect of insulin on hormone-sensitive lipase activity. Growth hormone treatment combined with restricted high-fat feeding reduced the activity of both lipases in adipose tissue and stimulated hormone-sensitive lipase in muscle. Generally, plasma levels of free fatty acids, glycerol and cholesterol were reduced by growth hormone, and in combination with restricted high-fat feeding, triglyceride levels improved too. We conclude that growth hormone inhibits lipid storage in adipose tissue by reducing both lipoprotein lipase activity and insulin's inhibitory action on hormone-sensitive lipase. We also propose that growth hormone's effects on tissue lipases and blood lipids are modulated by dietary regimen.  相似文献   

6.
Rats with carnitine deficiency due to trimethylhydrazinium propionate (mildronate) administered at 80 mg/100 g body weight per day for 10 days developed liver steatosis only upon fasting. This study aimed to determine whether the transient steatosis resulted from triglyceride accumulation due to the amount of fatty acids preserved through impaired fatty acid oxidation and/or from up-regulation of lipid exchange between liver and adipose tissue. In liver, mildronate decreased the carnitine content by approximately 13-fold and, in fasted rats, lowered the palmitate oxidation rate by 50% in the perfused organ, increased 9-fold the triglyceride content, and doubled the hepatic very low density lipoprotein secretion rate. Concomitantly, triglyceridemia was 13-fold greater than in controls. Hepatic carnitine palmitoyltransferase I activity and palmitate oxidation capacities measured in vitro were increased after treatment. Gene expression of hepatic proteins involved in fatty acid oxidation, triglyceride formation, and lipid uptake were all increased and were associated with increased hepatic free fatty acid content in treated rats. In periepididymal adipose tissue, mildronate markedly increased lipoprotein lipase and hormone-sensitive lipase activities in fed and fasted rats, respectively. On refeeding, carnitine-depleted rats exhibited a rapid decrease in blood triglycerides and free fatty acids, then after approximately 2 h, a marked drop of liver triglycerides and a progressive decrease in liver free fatty acids. Data show that up-regulation of liver activities, peripheral lipolysis, and lipoprotein lipase activity were likely essential factors for excess fat deposit and release alternately occurring in liver and adipose tissue of carnitine-depleted rats during the fed/fasted transition.  相似文献   

7.
8.
Effects of Three Bacterial Infections on Serum Lipids of Rabbits   总被引:8,自引:0,他引:8       下载免费PDF全文
Alteration of the rabbit serum lipids as a result of three bacterial infections was studied by quantitative thin-layer and gas-liquid chromatography. Anthrax infection slightly changed the serum lipid. Cholesterol did not change, though free fatty acids, triglycerides, and cholesteryl esters doubled, and lecithin increased threefold. Tularemia infection produced drastic changes in the serum lipid content of rabbits, increasing levels of cholesterol over 4-fold, free fatty acids 17-fold, triglycerides 11-fold, cholesteryl esters 2.5-fold, and lecithin almost 3-fold. Pneumococcus infection increased cholesterol 2.5 times, free fatty acids were more than doubled, triglycerides were increased 9.5 times, and lecithin was increased almost 4 times. Gas-liquid chromatographic analysis of the methyl esters of free fatty acids showed only quantitative changes in these acids due to infection. Some possible mechanisms of alteration of serum lipid content are discussed.  相似文献   

9.
We have investigated in vivo whether the gene expression of the beta3-adrenergic receptor (beta3-AR), perilipin A, hormone-sensitive lipase (HSL), and adipocyte lipid-binding protein (ALBP/aP2) is regulated in a site-specific manner. To induce lipolysis and discriminate between short- and long-term modifications, rats were submitted to an experimental fast for one or five days followed or not by refeeding. The mRNA encoding beta3-AR in retroperitoneal adipose tissue (RP) was significantly increased by one and five days of fasting (4-fold) and then lowered by one day of refeeding (2-fold) compared to fed rats. The reverse trend was observed for perilipin A expression in one day fasted rats. HSL mRNA concentrations were significantly induced (2.2-fold) by five days of fasting relative to fed animals and remained high after refeeding. ALBP/aP2, peroxisome proliferator-activated receptor gamma, and CAAT/enhancer binding protein alpha mRNA levels were essentially unaffected by dietary manipulations. Fasting and/or refeeding were similarly ineffective at regulating gene expression in SC. These data provide a molecular basis for regional differences at different steps of the lipolytic process.  相似文献   

10.
The effect was investigated of endurance training on the expression of uncoupling protein (UCP) mRNA in brown adipose tissue (BAT) of rats. The exercised rats were trained on a rodent treadmill for 5 days per week and a total of 9 weeks. After the training programme, a marked decrease in BAT mass was found in terms of weight or weight per unit body weight; there was a corresponding decrease in DNA content and a downward trend in RNA and glycogen levels. The UCP mRNA was present at a markedly decreased level in BAT of trained animals. In consideration of the reduced levels of mRNAs for hormone-sensitive lipase and acylCoA synthetase, the brown adipose tissue investigated appeared to be in a relatively atrophied and thermogenically quiescent state.  相似文献   

11.
Adipose triglyceride lipase (ATGL) hydrolyzes triacylglycerols to diacylglycerols in the first step of lipolysis, providing substrates for hormone-sensitive lipase (HSL). Here we studied whether ATGL messenger RNA (mRNA) and protein levels were affected by 24-h cold exposure in different white adipose tissue depots and in interscapular brown adipose tissue of lean and obese Zucker rats submitted to feeding and 14-h fasting conditions. HSL mRNA expression was also studied in selected depots. In both lean and obese rats, as a general trend, cold exposure increased ATGL mRNA and protein levels in the different adipose depots, except in the brown adipose tissue of lean animals, where a decrease was observed. In lean rats, cold exposure strongly improved fasting up-regulation of ATGL expression in all the adipose depots. Moreover, in response to fasting, in cold-exposed lean rats, there was a stronger positive correlation between circulating nonesterified fatty acids (NEFA) and ATGL mRNA levels in the adipose depots and a higher percentage increase of circulating NEFA in comparison with control animals not exposed to cold. In obese rats, fasting-induced up-regulation of ATGL was impaired and was not improved by cold. The effects of obesity and cold exposure on HSL mRNA expression were similar to those observed for ATGL, suggesting common regulatory mechanisms for both proteins. Thus, cold exposure increases ATGL expression and improves its fasting-up-regulation in adipose tissue of lean rats. In obese rats, cold exposure also increases ATGL expression but fails to improve its regulation by fasting, which could contribute to the increased difficulty for mobilizing lipids in these animals.  相似文献   

12.
Lysosomal acid lipase (LAL) is essential for the hydrolysis of triglycerides (TG) and cholesteryl esters (CE) in lysosomes. A mouse model created by gene targeting produces no LAL mRNA, protein, or enzyme activity. The lal-/- mice appear normal at birth, survive into adulthood, and are fertile. Massive storage of TG and CE is observed in adult liver, adrenal glands, and small intestine. The age-dependent tissue and gross progression in this mouse model are detailed here. Although lal-/- mice can be bred to give homozygous litters, they die at ages of 7 to 8 months. The lal-/- mice develop enlargement of a single mesenteric lymph node that is full of stored lipids. At 6;-8 months of age, the lal-/- mice have completely absent inguinal, interscapular, and retroperitoneal white adipose tissue. In addition, brown adipose tissue is progressively lost. The plasma free fatty acid levels are significantly higher in lal-/- mice than age-matched lal+/+ mice, and plasma insulin levels were more elevated upon glucose challenge. Energy intake was also higher in lal-/- male mice, although age-matched body weights were not significantly altered from age-matched lal+/+ mice. Early in the disease course, hepatocytes are the main storage cell in the liver; by 3;-8 months, the lipid-stored Kupffer cells progressively fill the liver. The involvement of macrophages throughout the body of lal-/- mice provide evidence for a critical nonappreciated role of LAL in cellular cholesterol and fatty acid metabolism, adipocyte differentiation, and fat mobilization.  相似文献   

13.
Swine adipose tissue hormone-sensitive lipase, purified 475-fold to 10% protein purity, has been identified as a polypeptide of Mr = 84,000. The enzyme has high specific activity against tri-, di- and monoacylglycerols, as well as cholesterol esters, and is inhibited by millimolar NaF, and micromolar HgCl2 and DFP. The enzyme polypeptide serves as a substrate for cyclic AMP-dependent protein kinase. The characteristics of the hormone-sensitive lipase from swine adipose tissue are similar to those reported previously for the enzyme from rat. They differ from those reported for the lipase from chicken adipose tissue, and possible reasons for these differences are discussed.  相似文献   

14.
Hormone-sensitive lipase (HSL) is believed to play an important role in the mobilization of fatty acids from triglycerides (TG), diglycerides, and cholesteryl esters in various tissues. Because HSL-mediated lipolysis of TG in adipose tissue (AT) directly feeds non-esterified fatty acids (NEFA) into the vascular system, the enzyme is expected to affect many metabolic processes including the metabolism of plasma lipids and lipoproteins. In the present study we examined these metabolic changes in induced mutant mouse lines that lack HSL expression (HSL-ko mice). During fasting, when HSL is normally strongly induced in AT, HSL-ko animals exhibited markedly decreased plasma concentrations of NEFA (-40%) and TG (-63%), whereas total cholesterol and HDL cholesterol levels were increased (+34%). Except for the increased HDL cholesterol concentrations, these differences were not observed in fed animals, in which HSL activity is generally low. Decreased plasma TG levels in fasted HSL-ko mice were mainly caused by decreased hepatic very low density lipid lipoprotein (VLDL) synthesis as a result of decreased NEFA transport from the periphery to the liver. Reduced NEFA transport was also indicated by a depletion of hepatic TG stores (-90%) and strongly decreased ketone body concentrations in plasma (-80%). Decreased plasma NEFA and TG levels in fasted HSL-ko mice were associated with increased fractional catabolic rates of VLDL-TG and an induction of the tissue-specific lipoprotein lipase (LPL) activity in cardiac muscle, skeletal muscle, and white AT. In brown AT, LPL activity was decreased. Both increased VLDL fractional catabolic rates and increased LPL activity in muscle were unable to provide the heart with sufficient NEFA, which led to decreased tissue TG levels in cardiac muscle. Our results demonstrate that HSL deficiency markedly affects the metabolism of TG-rich lipoproteins by the coordinate down-regulation of VLDL synthesis and up-regulation of LPL in muscle and white adipose tissue. These changes result in an "anti-atherogenic" lipoprotein profile.  相似文献   

15.
黄鳝激素敏感性脂肪酶基因Hsl染色体原位杂交定位   总被引:3,自引:0,他引:3  
戢福云  余其兴  潘佩文 《遗传》2003,25(2):163-167
动物脂肪组织中的甘油三酯在数量上是最重要的储存能源。Hsl基因所编码的激素敏感性脂肪酶是一种多功能酶。它通过催化水解储存在脂肪组织中的甘油三酯,以及卵巢、肾上腺、睾丸和胎盘中的胆固醇酯,在机体能量供应和类固醇生成作用中发挥重要作用。本研究以放射性同位素和地高辛标记重组质粒pBS中所含猪Hsl基因作为探针,分别与Pst Ⅰ酶切的黄鳝基因组总DNA和有丝分裂染色体标本进行Southern杂交和荧光原位杂交(FISH)。结果显示,Southern杂交呈现一条带,片段长度约为11.5kb。同时,应用FISH定位Hsl基因于黄鳝5号染色体,相对着丝粒距离为78.35±1.26。该定位结果与应用“特定染色体DNA池”定位黄鳝Hsl基因结果相符,且定位结果更为精细。表明在淡水鱼类黄鳝基因组中存在Hsl基因,另一方面也首次提供黄鳝5号染色体上FISH杂交信息,从而为增加黄鳝染色体组中已知的遗传标记和建立高精度遗传图谱奠定基础。 Abstract:Adipose tissue triacylglycerols are the quantitatively most important source of stored energy in animals.Hormone-sensitive lipase encoded by hormone-sensitive lipase gene (Hsl) is a multifunctional enzyme that catalyzes the hydrolysis of triacylglycerol stored in adipose tissue and cholesterol esters in the adrenals,ovaries,testes and macrophages.Using pig Hsl gene inserted into pBS labeled by the radioactive isotope and the digoxigenin as the probes respectively,one band,11.5kb,has been shown to hybridized with total DNA of rice field eel digested with Pst Ⅰby Southern blotting and Hsl gene has been assigned to metaphase chromosome 5,at the position of 78.35±1.26 from the c entromere in rice field eel by fluorescent in situ hybridization (FISH).The mapping results are corresponding to that of “specific-chromosomal DNA pool”obtained by chromosome microisolation used to map gene and the mapping result is more accurate.The results of the study further illustrate the importance of the presence of Hsl gene in rice field eel genome and provide the first FISH mapping data for rice field eel chromosome 5.The current studies would advance the addition of known genetic markers and the construction of high resolution genetic map in rice field eel genome.  相似文献   

16.
Prolonged fasting is characterized by lipid mobilization (Phase 2), followed by protein breakdown (Phase 3). Knowing that body lipids are not exhausted in Phase 3, we investigated whether changes in the metabolic status of prolonged fasted rats are associated with differences in the expression of epididymal adipose tissue proteins involved in lipid mobilization. The final body mass, body lipid content, locomotor activity and metabolite and hormone plasma levels differed between groups. Compared with fed rats, adiposity and epididymal fat mass decreased in Phase 2 (approximately two- to threefold) and Phase 3 (∼4.5-14-fold). Plasma nonesterified fatty acids (NEFA) concentrations were increased in Phase 2 (approximately twofold) and decreased in Phase 3 (approximately twofold). Daily locomotor activity was markedly increased in Phase 3 (∼11-fold). Compared with the fed state, expressions of adipose triglyceride lipase (ATGL; mRNA and protein), hormone-sensitive lipase (HSL; mRNA) and phosphorylated HSL at residue Ser660 (HSL Ser660) were increased during Phase 2 (∼1.5-2-fold). HSL (mRNA and protein) and HSL Ser660 levels were lowered during Phase 3 (∼3-12-fold). Unlike HSL and HSL Ser660, ATGL expression did not correlate with circulating NEFA, mostly due to data from animals in Phase 3. At this stage, ATGL could play an essential role for maintaining a low mobilization rate of NEFA, possibly to sustain muscle performance and hence increased locomotor activity. We conclude that ATGL and HSL are not coordinately regulated in response to changes in fuel partitioning during prolonged food deprivation, ATGL appearing as the major lipase in late fasting.  相似文献   

17.
PURPOSE OF REVIEW: The lipolytic catabolism of stored fat in adipose tissue supplies tissues with fatty acids as metabolites and energy substrates during times of food deprivation. This review focuses on the function of recently discovered enzymes in adipose tissue lipolysis and fatty acid mobilization. RECENT FINDINGS: The characterization of hormone-sensitive lipase-deficient mice provided compelling evidence that hormone-sensitive lipase is not uniquely responsible for the hydrolysis of triacylglycerols and diacylglycerols of stored fat. Recently, three different laboratories independently discovered a novel enzyme that also acts in this capacity. We named the enzyme 'adipose triglyceride lipase' in accordance with its predominant expression in adipose tissue, its high substrate specificity for triacylglycerols, and its function in the lipolytic mobilization of fatty acids. Two other research groups showed that adipose triglyceride lipase (named desnutrin and Ca-independent phospholipase A2zeta, respectively) is regulated by the nutritional status and that it might exert acyl-transacylase activity in addition to its activity as triacylglycerol hydrolase. Adipose triglyceride lipase represents a novel type of 'patatin domain-containing' triacylglycerol hydrolase that is more closely related to plant lipases than to other known mammalian metabolic triacylglycerol hydrolases. SUMMARY: Although the regulation of adipose triglyceride lipase and its physiological function remain to be determined in mouse lines that lack or overexpress the enzyme, present data permit the conclusion that adipose triglyceride lipase is involved in the cellular mobilization of fatty acids, and they require a revision of the concept that hormone-sensitive lipase is the only enzyme involved in the lipolysis of adipose tissue triglycerides.  相似文献   

18.

Background

Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored lipids, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. The aim of this study was to define lipid profiles in plasma, white adipose tissue (WAT) and liver of HSL null mice, in order to better understand the role of this multifunctional enzyme.

Methodology/Principal Findings

This study used global and targeted lipidomics and expression profiling to reveal changed lipid profiles in WAT, liver and plasma as well as altered expression of desaturases and elongases in WAT and liver of HSL null mice on high fat diet. Decreased mRNA levels of stearoyl-CoA desaturase 1 and 2 in WAT were consistent with a lowered ratio of 16∶1n7/16∶0 and 18∶1n9/18∶0 in WAT and plasma. In WAT, increased ratio of 18∶0/16∶0 could be linked to elevated mRNA levels of the Elovl1 elongase.

Conclusions

This study illustrates the importance of HSL for normal lipid metabolism in response to a high fat diet. HSL deficiency greatly influences the expression of elongases and desaturases, resulting in altered lipid profiles in WAT, liver and plasma. Finally, altered proportions of palmitoleate, a recently-suggested lipokine, in tissue and plasma of HSL null mice, could be an important factor mediating and contributing to the changed lipid profile, and possibly also to the decreased insulin sensitivity seen in HSL null mice.  相似文献   

19.
The plasma cholesteryl ester transfer protein (CETP) catalyzes the transfer of cholesteryl esters from high density lipoproteins (HDL) to triglyceride-rich lipoproteins and plays a major role in the catabolism of HDL. Lipoprotein lipase (LPL) is the rate-limiting enzyme for hydrolysis of circulating triglyceride and is involved in HDL formation. We show that tissues containing LPL are major sources of CETP mRNA in several mammalian species, including some with low cholesteryl ester transfer activity in plasma. In hamsters, adipose tissue and heart were found to be the richest sources of both CETP and LPL mRNA; in situ hybridization studies showed that the same cell types (i.e. adipocytes or myocytes) contained CETP and LPL mRNA in these tissues. Isolated adipocytes synthesized active CETP. Dietary studies revealed a complex pattern of response of CETP mRNA levels in different tissues, which showed partial similarity to the changes in LPL mRNA abundance. However, high cholesterol diets resulted in increased CETP mRNA abundance in adipose tissue, heart, and skeletal muscle, without equivalent changes in LPL mRNA. Plasma HDL cholesteryl ester levels showed strong inverse correlations with CETP mRNA abundance in adipose tissue. The results suggest a conserved function of CETP in adipose tissue and heart, such as a co-ordinate action with LPL to enhance HDL turnover. Although there is considerable overlap in the tissue- and cell-specific pattern of CETP and LPL gene expression, dietary studies revealed only limited parallelism in response at the mRNA level. The increase in CETP mRNA in peripheral tissues in response to increased dietary cholesterol suggests that local induction of CETP synthesis may help to recycle cholesterol deposited in these tissues during lipolysis of dietary lipoproteins.  相似文献   

20.
The hormone-sensitive and lipoprotein lipases are critical determinants of the metabolic adaptation to starvation. Additionally, the uncoupling proteins have emerged with potential roles in the metabolic adaptations required by energy deficiency. The objective of this study was to evaluate the expression (mRNA abundance) of uncoupling proteins 2 and 3 and that of hormone-sensitive and lipoprotein lipase in the adipose tissue and skeletal muscle of the pig in relationship to feed deprivation. Thirty-two male castrates (87 kg +/- 5%) were assigned at random to fed and feed-deprived treatment groups. After 96 hr, the pigs were euthanized and adipose and skeletal muscle tissue obtained for total RNA extraction and nuclease protection assays. Feed deprivation increased uncoupling protein 3 mRNA abundance 103-237% (P < 0.01) in longissimus and red and white semitendinosus muscle. In contrast, the increase in uncoupling protein 3 mRNA in adipose tissue was only 23% (P < 0.06), and adipose uncoupling protein 2 mRNA was not influenced (P > 0.66) by feed deprivation. The increased abundance of uncoupling protein 2 mRNA in the longissimus muscle of feed-deprived pigs was small (22%), but significant (P < 0.04). The expression of hormone-sensitive lipase was increased 46% and 64% (P < 0.04) in adipose tissue and longissimus muscle, respectively, by feed deprivation, whereas adipose lipoprotein lipase expression was reduced (P < 0.01) to 20% of that of the fed group. Longissimus lipoprotein lipase expression in the feed-deprived group was 37% of that of the fed group (P < 0.01), and similar reductions were detected in red and white semitendinosus muscle. Overall, these findings indicate that uncoupling protein 3 expression in skeletal muscle is quite sensitive to starvation in the pig, whereas uncoupling protein 2 changes are minimal. Furthermore, we conclude that hormone-sensitive lipase is upregulated at the mRNA level with prolonged feed deprivation, whereas lipoprotein lipase is downregulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号