首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David A. Pyke 《Oecologia》1990,82(4):537-543
Summary Demographic characteristics associated with the maintenance and growth of populations, such as seed dynamics, seedling emergence, survival, and tiller dynamics were examined for two tussock grasses, the native Agropyron spicatum and the introduced Agropyron desertorum in a 30-month field study. The introduced grass was aerially sown onto a native grassland site. Seed production of the introduced grass was greater than the native grass in both above- and below-average precipitation years. Seeds of A. spicatum were dispersed when they mature, while A. desertorum retained some seeds in inflorescences, and dispersed them slowly throughout the year. This seed retention allowed some seeds of the introduced grass to escape peak periods of seed predation during the summer and allowed seeds to be deposited constantly into the seed bank. Carryover of seeds in the seed bank beyond one year occurred in the introduced grass but not in the native species. For both species, seedling emergence occurred in both autumn or spring. Survival rates for A. desertorum were higher than A. spicatum when seedlings emerged between November and March. Survival rates of cohorts emerging before November favored A. spicatum whereas survival rates did not differ between species for cohorts emerging after March. Individuals of both species emerging after April were unable to survive the summer drought. Demographic factors associated with seeds of A. desertorum seemed to favor the maintenance and spread of this introduced grass into native stands formerly dominated by A. spicatum.  相似文献   

2.
Competitive ability is linked to rates of water extraction   总被引:1,自引:0,他引:1  
Summary The relative competitive abilities of Agropyron desertorum and Agropyron spicatum under rangeland conditions were compared using Artemisia tridentata ssp. wyomingensis transplants as indicator plants. We found A. desertorum to have substantially greater competitive ability than A. spicatum as manifested by the responses of Artemisia shrubs that were transplanted into nearly monospecific stands of these grass species. The Artemisia indicator plants had lower survival, growth, reproduction, and late-season water potential in the neighborhoods dominated by A. desertorum than in those dominated by A. spicatum. In similar, essentially monospecific grass stands, neutron probe soil moisture measurements showed that stands of A. desertorum extracted water more rapidly from the soil profile than did those of A. spicatum. These differences in extraction rates correlate clearly with the differences in indicator plant success in the respective grass stands. Nitrogen and phosphorus concentrations in Artemisia tissues suggested these nutrients were not limiting indicator plant growth and survival in the A. desertorum plots.  相似文献   

3.
Summary Root proliferation in nutrient-rich soil patches is an important mechanism facilitating nutrient capture by plants. Although the phenomenon of root proliferation is well documented, the specific timing of this proliferation has not been investigated. We studied the timing and degree of root proliferation for three perennial species common to the Great Basin region of North America: a shrub, Artemisia tridentata, a native tussock grass, Agropyron spicatum, and an introduced tussock grass, Agropyron desertorum. One day after we applied nutrient solution to small soil patches, the mean relative growth rate of Agropyron desertorum roots in these soil patches was two to four times greater than for roots of the same plants in soil patches reated with distilled water. Most of the increased root growth came from thin, laterally branching roots within the patches. This rapid and striking root proliferation by Agropyron desertorum occurred in response to N-P-K enrichment as well as to P or N enrichment alone. A less competitive bunchgrass, Agrophyron spicatum, showed no tendency to proliferate roots in enriched soil patches during these two-week experiments. The shrub Artemisia tridentata proliferated roots within one day of initial solution injection in the N-enrichment experiment, but root proliferation of this species was more gradual and less consistent in the N-P-K and P-enrichment experiments, respectively. The ability of Agropyron desertorum to proliferate roots rapidly may partly explain both its general competitive success and its superior ability to exploit soil nutrients compared to Agropyron spicatum in Great Basin rangelands of North America.  相似文献   

4.
Summary Agropyron desertorum, a grazing-tolerant bunchgrass introduced to the western U.S. from Eurasia, and Agropyron spicatum, a grazing-sensitive bunchgrass native to North America, were examined in the field for photosynthetic capacity, growth, resource allocation, and tiller dynamics. These observations allowed identification of physiological characteristics that may contribute to grazing tolerance in semiarid environments. A uniform matrix of sagebrush, Artemisia tridentata, provided an ecologically relevant competitive environment for both bunch-grass species. Physiological activity, growth, and allocation were also followed during recovery from a severe defoliation treatment and were correlated with tiller dynamics.Potential photosynthetic carbon uptake of both species was dominated by stems and leaf sheaths during June, when maximum uptake rates occurred. For both species, water use efficiency of stems and sheaths was similar to that of leaf blades, but nitrogen investment per photosynthetic surface area was less than in blades. In addition, soluble carbohydrates in stems and sheaths of both species constituted the major labile carbon pools in control plants. Contrary to current theory, these findings suggest that culms from which leaf blades have been removed should be of considerable value to defoliated bunchgrasses, and in the case of partial defoliation could provide important supplies of organic nutrients for regrowth. These interpretations, based on total pool sizes, differ markedly from previous interpretations based on carbohydrate concentrations alone, which suggested that crowns contain large carbohydrate reserves. In this study, crowns of both species contained a minor component of the total plant carbohydrate pool.Following defoliation, A. desertorum plants rapidly reestablished a canopy with 3 to 5 times the photosynthetic surface of A. spicatum plants. This difference was primarily due to the greater number of quickly growing new tillers produced following defoliation. Agropyron spicatum produced few new tillers following defoliation despite adequate moisture, and carbohydrate pools that were equivalent to those in A. desertorum.Leaf blades of regrowing tillers had higher photosynthetic capacity than blades on unclipped plants of both species, but the relative increase, considered on a unit mass, area, or nitrogen basis, was greater for A. desertorum than for A. spicatum. Agropyron desertorum also had lower investment of nitrogen and biomass per unit area of photosynthetic tissues, more tillers and leaves per bunch, and shorter lived stems, all of which can contribute to greater tolerance of partial defoliation.Greater flexibility of resource allocation following defoliation was demonstrated by A. desertorum for both nitrogen and carbohydrates. Relatively more allocation to the shoot system and curtailed root growth in A. desertorum resulted in more rapid approach to the preclipping balance between the root and shoot systems, whereas root growth in A. spicatum continued unabated following defoliation. Nitrogen required for regrowth in both species was apparently supplied by uptake rather than reserve depletion. Carbohydrate pools in the shoot system of both species remained very low following severe defoliation and were approximately equivalent to carbon fixed in one day by photosynthesis of the whole canopy.Dedicated to Drs. Michael Evenari and Konrad Springer  相似文献   

5.
Summary Responses to clipping and bison grazing in different environmental contexts were examined in two perennial grass species, Andropogon gerardii and Panicum virgatum, on the Konza Prairie in northeastern Kansas. Grazed tillers had lower relative growth rates (RGR) than clipped tillers following defoliation but this difference was transient and final biomass was not affected by mode of defoliation. Grazed tillers of both species had higher RGR throughout the season than ungrazed tillers, resulting in exact compensation for tissue lost to defoliation. However, A. gerardii tillers which had been grazed repeatedly the previous year (1988) had reduced relative growth rates, tiller biomass and tiller survival in 1989. This suggests that the short-term increase in aboveground relative growth rates after defoliation had a cost to future plant growth and tiller survival.In general, the two species had similar responses to defoliation but their responses were altered differentially by fire. The increase in RGR following defoliation of A. gerardii was relatively greater on unburned than burned prairie, and was influenced by topographic position. P. virgatum responses to defoliation were similar in burned and unburned prairie. Thus grazing, fire, and topographical position all interact to influence tiller growth dynamics and these two species respond differently to the fire and grazing interaction. In addition, fire may interact with grazing pattern to influence a plants' grazing history and thus its long-term performance.  相似文献   

6.
Summary Root growth responses to defoliation were observed in the field with an improved root periscope technique, which is described. The grazing tolerant, Eurasian bunchgrass, Agropyron desertorum, was compared with the very similar but grazing sensitive, North American bunchgrass, A. spicatum. Root length growth of clipped A. desertorum was about 50% of that of intact plants, while root elongation of clipped A. spicatum continued relatively unabated during ninety days of regrowth following severe defoliation. The reduced root growth in A. desertorum was correlated with the allocation of relatively more resources to aboveground regrowth, thus aiding reestablishment of the root: shoot balance. This balance was apparent in similar root mortality patterns of clipped and control A. desertorum plants in the season following defoliation. In clipped A. spicatum, however, root mortality increased in the winter following the season in which the clipping was done and continued into the subsequent growing season. Reduction of root growth following defoliation appears to be an effective mechanism to aid reestablishment of the photosynthetic canopy and the root: shoot balance. As such it contributes to both herbivory tolerance and maintenance of competitive ability.  相似文献   

7.
Competition for light can affect exploitation of spatially heterogeneous soil resources. To evaluate the influence of shoot status on root growth responses in nutrient-rich soil patches, we studied the effects of shading and whole-plant nitrogen status on root growth in N-enriched and nonenriched patches by mature Agropyron desertorum plants growing in the field with below-ground competition. Roots in enriched patches had greater length to weight ratios (specific root length, SRL), indicating increased absorptive surface areas, compared with roots in control patches. Increased SRL was due to increased production and length of higher order laterals rather than morphological changes in roots of the same branching order. Although the pattern of root growth rates in patches was the same for shaded and unshaded plants, the magnitude of this response to enriched patches was damped by shading. Root relative growth rates (RGR) in N-enriched patches were reduced by more than 50% by short-term shading treatments (60% reduction in photosynthetic flux density), while root RGR in unenriched patches was unaffected by shading. Unexpectedly, plants with higher nitrogen status had greater root RGR in enriched patches than plants that had not received nitrogen supplement, again with no detectable effect on root RGR in the unenriched patches. Therefore, while both shading and plant N status affected the ability of roots to exploit enriched patches by proliferation, there was no stimulation or suppression of root growth in the unenriched, control patches. Thus, plants already under competitive pressure above ground for light and below ground for nutrients should be less able to rapidly respond to opportunities presented in nutrient patches and pulses.  相似文献   

8.
Although the tussock growth form of caespitose graminoids is widespread, the effect of this growth form on light interception and carbon gain of tillers has received little attention. Daily incident photosynthetic photon flux density (PFDinc) and carbon gain in monospecific stands of tussock grasses were compared with those of a hypothetical distribution with the equivalent tiller density per total ground area, but evenly distributed rather than clumped in tussocks. This was computed for two tussock grasses Pseudoroegneria spicata (Pursh) A. Löve (bluebunch wheatgrass) and Agropyron desertorum (Fisch, ex Link) Schult. (creasted wheatgrass) at different plant densities. Daily PFDinc and net photosynthesis (A) were greater if tillers were distributed uniformly rather than clumped in tussocks, except when the density of tussocks was so great as to approach a uniform canopy. When tussock density per ground area was low, much of the difference between tussock and uniform tiller densities in PFDinc and A was due to shading within the tussocks; up to 50–60% of the potential carbon gain was lost in A. desertorum due to shading within tussocks. In a matrix of tussocks, the light field for establishing seedlings was very heterogeneous; potential A ranged from 7 to 96% relative to an isolated seedling. The mean of daily PFDinc and A for seedlings in a tussock stand were nearly identical to the values in corresponding stands of uniform tiller distributions. It is hypothesized that the loss of A resulting from clumping tillers into tussocks is offset by benefits of protecting sequestered belowground resources from invasion by seedlings of competitors.  相似文献   

9.
Summary Plant demographic and root exclusion approaches were used to examine the influence of roots of adult Artemisia tridentata, Agropyron desertorum, and Agropyron spicatum individuals on seedling survival of four C3 semiarid species, three perennials, Ar. tridentata, Ag. desertorum, Ag. spicatum, and an annual, Bromus tectorum. Furthermore, height of Ar. tridentata seedlings and seed production of B. tectorum were assessed. The probability of a seedling being alive significantly depended on the seedling species, the neighboring adult species, and on the depth to which root competition was excluded. As seedlings, survival of Agropyron species did not differ, whereas survival of Ar. tridentata seedlings was higher than Ag. desertorum and was similar to Ag. spicatum. Bromus tectorum maintained significantly higher survival rates than perennial seedlings. Established individuals of Ar. tridentata reduced seedling survival more than established individuals of either Agropyron species. Seedling survival significantly increased with greater depth of root exclusion for the perennials but did not significantly affect seedling survival of B. tectorum. Height of Ar. tridentata seedlings and seed production of B. tectorum significantly increased with depth of root exclusion. Seed production of B. tectorum was highest when competing with Ag. desertorum and was lowest with Ar. tridentata. Root competition decreased the seed population of B. tectorum in the next generation even though it had no impact on survival. Competition in the upper soil horizon occurs between seedlings and established adults early in the growing season and potentially restricts root growth of seedlings. In arid and semiarid ecosystems, soil moisture is depleted from the upper horizons first, resulting in the death of seedlings that do not have access to moisture.  相似文献   

10.
The caespitose grasses Agropyron spicatum and Agropyron desertorumexhibit a striking difference in tillering response followingexperimental clipping treatment, with plants of A. desertorumproducing up to 18 times more tillers. The two species are similarin many aspects of their phenology and physiology. Previousexamination of current photosynthate production and levels ofstored carbohydrates indicate only slight differences betweenthe species. The possible role of three anatomical/morphologicalconstraints in controlling tillering was examined. No evidencefor such constraints was found. A basal cluster of buds is presenton the parent tillers. The mean bud number per tiller was similarfor both species and the range (3–9) was identical. Nearlyall of the bud apical meristems appeared anatomically viablethroughout the growing season and vascular development occurredto within 250 to 490 µm of the various bud apices of bothspecies. Both normal fall tillers and summer tillers producedunder clipping treatment originated from the largest, most distalbuds of the basal cluster of buds. However, precocious, morphologicallydistinctive, second-order tillers occasionally grew out fromthe smaller, most basal buds of some elongating fall tillers. Agropyron spicatum, Agropyron desertorum, bluebunch wheatgrass, crested wheatgrass, bud, tiller, tillering ability, meristematic potential, vascular development, regrowth  相似文献   

11.
Summary Growth and carbon allocation of a cool season tussock grass, Agropyron desertorum, following defoliation of newly initiated tillers in the autumn of 1988 and 1989 were investigated. Tiller density and mortality, reproductive shoot density, root density, biomass, individual tiller weight, carbon allocation, and soil water depletion were used to evaluate the response of A. desertorum to autumn grazing. Tiller recruitment was lower in the autumn-defoliated treatment in both years compared with the control because of the cessation of tiller development following autumn defoliation. Autumn defoliation also significantly reduced the movement of 13C to the roots in 1988 but not in 1989. Soils were cooler and drier in 1989. Other plant growth measurements and soil water depletion rates were not different between treatments. Autumn defoliation in 1988 did not influence tiller recruitment in the following autumn. Two consecutive years of autumn defoliation did not affect tiller overwinter mortality or peak standing crop in 1990.  相似文献   

12.
Summary Previous studies have shown that plant carbon isotope composition varies when plants experience differences in water and nutrient availability. However, none have addressed the effect of root interactions, including competition for these soil resources, on carbon isotope ratios. We studied the effect of interspecific root interactions on the productivity and carbon isotope ratios of two Great Basin tussock grass species (Agropyron desertorum and Pseudoroegneria spicata). We compared grasses grown in mixture with sagebrush (Artemisia tridentara) to grasses in similar mixtures but where root interactions with sagebrush were limited by fiberglass partitions. During both years of the study, tussocks growing in competition with sagebrush produced tissue with more negative 13C values than grasses experiencing limited root interaction with sagebrush. The magnitude of this difference (0.5 to 0.9%) is similar to that found in other studies when soil fertility and moisture availability were altered.  相似文献   

13.
We compared root proliferation in fertilized microsites among seven cultivars of five commonly planted cool-desert perennial grass species that differ in productivity and competitive ability. In a greenhouse experiment on nutrient-limited plants, one soil microsite in each pot received distilled water (control) and a second microsite received a rich, complete nutrient solution (fertilized). Roots in and adjacent to the microsites were mapped on Mylar windows for 22 days after the injections to determine the magnitude and timing of response in root length relative growth rates (RGRs). Because we provided adequate water, used a high level of fertilization in the treatment microsites, and conducted the experiments during rapid vegetative growth, the results provide a measure of the relative capacities and maximal rates of the grasses responses to enriched microsites. Root samples were harvested from control and fertilized microsites at the end of the experiment to determine the morphological basis of the proliferation response. In all seven grasses fine roots proliferated in the fertilized microsites faster than in the control microsites. The grasses did not differ in the timing of their response which showed a peak 7–8 days after injection. Although one species, Pseudoroegneria spicata cv. Goldar, had higher maximum root length RGR and higher RGR ratio (RGR in fertilized to RGR in control microsites) 7–8 days after injection, the seven grasses did not differ significantly in the magnitude of root length RGR response to fertilizer integrated over the 22 day experiment. The grasses also did not differ significantly in root morphological changes in fertilized mocrosites. Compared to roots in control microsites, roots in fertilized microsites had greater specific root length, length of secondary roots per length of main axis, number of lateral and sublateral roots per length of main axis, and mean lateral root length. Root proliferation was mainly the result of increased lateral branching and lateral root growth in all seven grasses. The consistency of root proliferation responses among these seven cultivars suggests that differences in the capacity for, maximum rate, or morphological basis of root proliferation are not directly related to ecological characteristics such as productivity and competitive ability. Other aspects of root response to nutrient enrichment, such as differential responses as a function of microsite nutrient concentration, plant phenology, plant nutrient status, or specific nutrient element(s), may still be important, but further experiments are required to determine whether different responses to enriched soil microsites among species correspond with know species differences in ecological characteristics.  相似文献   

14.
Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via ‘cross-facilitation’ of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as ‘nurse’species in restoration efforts.  相似文献   

15.
There is a major need for restoration of nonforest ecosystems in the Brazilian Cerrado, and planting seedlings is promising. However, there is no currently available information on nontree species production in nurseries. Grasses are dominant in the Cerrado herbaceous layer; therefore, we tested whether tree seedling production techniques can be used for two native grasses widely spread across the Cerrado ecoregion (Schizachyrium sanguineum and Loudetiopsis chrysothrix). We performed a factorial experiment with three levels: (1) seedbed substrate, (2) container volume, and (3) final substrate. Seeds were germinated in seedbeds with native soil or sand and, after emergence, transferred to 30, 55, or 290 cm3 containers filled with native soil, commercial substrate, or a mixture thereof. We evaluated seedling survival, height relative growth rate (RGR), tillering, and dry biomass. Survival rates after transfer from seedbeds to containers were greater than 80% for both species. Generally, species had greater height RGR, tillering, and biomass in the 290 cm3 containers than in the other containers, and the presence of native soil in the seedbeds, as well as in the containers, fostered seedling growth. However, the use of native soil is not recommended for large‐scale production, because its acquisition could degrade Cerrado areas. The commercial substrate improvement could be an alternative to increase seedling growth, since grasses survived well and presented greater growth in the largest container. Our study demonstrated that the techniques currently used in commercial nurseries for growing trees are suitable for both grasses, and substrates and container size drive seedling growth.  相似文献   

16.
Summary The spatial arrangement of tiller replacement was assessed on grazed and ungrazed tussocks of Agropyron desertorum (Fisch. ex Link) Schult. for three annual cycles. Frequency distributions of the number of replacement tillers per single progenitor were also determined. Tiller replacement was usually greater on the perimeter of tussocks than within the core, with or without grazing. Replacement was inversely related to grazing intensity, both on the perimeter and within the core of tussocks. Heights of replacement tillers on the perimeter or within the core seldom differed. Furthermore, grazing seldom affected the number of replacement tillers per progenitor. Greater tillering on the perimeter than within the core indicates that the tussocks were expanding. Apparently, grazing neither enhances tussock expansion and subsequent disintegration, nor does it necessarily lead to patches of tillers (multiple tillering per progenitor) within tussocks of A. desertorum.  相似文献   

17.
Three experiments are reported which examine the relative roles of host and Rhizobium genotypes as factors limiting clover (Trifolium repens L.) growth at low soil temperatures.In the first experiment un-nodulated clover and perennial ryegrass (Lolium perenne L.) were grown with non-limiting nitrate at root temperatures of 8, 10 and 12°C. The ryegrass had substantially better relative growth rates (RGR) than the clover with the biggest difference occurring at 8°C. Alterations in growth rate with temperature were more marked in clover than in ryegrass but the latter still produced several times more dry matter than clover at each temperature.In the subsequent experiments clover nodulated with different strains of rhizobia was grown with and without non-limiting additions of nitrate at root temperatures of 9, 12 and 15°C. Plants receiving nitrate generally produced more dry matter than those dependent upon Rhizobium for nitrogen but differences in yield between these treatments did not alter with temperature. This suggests that limitations imposed by nitrogen fixation are similar at both high and low temperatures. Indeed, there was some evidence that nitrogen limitations were rather more pronounced at the highest temperature. The first experiment clearly demonstrated that the clover genotype makes particularly poor use of nitrate at low root temperatures when compared to its common companion perennial ryegrass.It can be concluded that improvements in spring growth of clover will rest largely with alterations to the plant genotype and its ability to use combined nitrogen for growth at lower temperatures rather than with changes in rhizobia or any symbiotic characters.  相似文献   

18.
Summary The annual replacement of tillers of Agropyron desertorum (Fisch. ex Link) Schult., a grazing-tolerant, Eurasian tussock grass, was examined in the field following cattle grazing. Heavy grazing before internode (culm) elongation seldom affected tiller replacement. Heavy grazing during or after internode elongation, which elevates apical meristems, increased overwinter mortality of fall-produced tillers and reduced the number and heights of these replacement tillers. Unexpectedly, tussocks grazed twice within the spring growing season tended to have lower overwinter tiller mortality, greater tiller replacement, and larger replacement tillers than tussocks grazed only once in late spring. These responses of twice-grazed tussocks, however, were still less than those of ungrazed tussocks or tussocks grazed moderately in early spring. The presence of ungrazed tillers on partially grazed tussoks did not increase the replacement of associated grazed tillers relative to tillers on uniformly grazed plants. This result indicates that resource sharing among tillers, if present, is short-lived or ecologically unimportant in this species. Although A. desertorum is considered grazing-tolerant, tiller replacement on heavily grazed tussocks, particularly those grazed during or after internode elongation when apical meristems were removed, was usually inadequate for tussock maintenance. These observations at the tiller (ramet) level of organization in individual tussocks (genet) may explain the often noted reduction in stand (population) longevity with consistent heavy grazing.  相似文献   

19.
Interference at the level of fine roots in the field was studied by detailed examination of fine root distribution in small soil patches. To capture roots as they occur in natural three-dimensional soil space, we used a freezing and slicing technique for microscale root mapping. The location of individual roots intersecting a sliced soil core surface was digitized and the identity of shrub and grass roots was established by a chemical technique. Soil patches were created midway between the shrub, Artemisia tridentata, and one of two tussock grasses, Pseudoroegneria spicata or Agropyron desertorum. Some soil patches were enriched with nutrients and others given only deionized water (control); in addition, patches were located between plants of different size combination (large shrubs with small tussock grasses and small shrubs with large tussock grasses). The abundance of shrub and grass roots sharing soil patches and the inter-root distances of individual fine roots were measured. Total average rooting density in patches varied among these different treatment combinations by only a factor of 2, but the proportion of shrub and grass roots in the patches varied sixfold. For the shrub, the species of grass roots sharing the patches had a pronounced influence on shrub root density; shrub roots were more abundant if the patch was shared with Pseudoroegneria roots than if shared with Agropyron roots. The relative size of plants whose roots shared the soil patches also influenced the proportion of shrub and grass roots; larger plants were able to place more roots in the patches than were the smaller plants. In the nutrient-enriched patches, these influences of grass species and size combination were amplified. At the millimeter- to centimeter-scale within patches, shrub and grass roots tended to segregate, i.e., avoid each other, based on nearest-neighbor distances. At this scale, there was no indication that the species-specific interactions were the result of resource competition, since there were no obvious patterns between the proportion of shrub and grass roots of the two species combinations with microsite nutrient concentrations. Other potential mechanisms are discussed. Interference at the fine-root level, and its species-specific character, is likely an influential component of competitive success, but one that is not easily assessed.  相似文献   

20.
We estimated R*s and tested the applicability of R* theory on nonindigenous plant invasions in semi-arid rangeland. R* is the concentration of a resource that a species requires to survive in a habitat. R* theory predicts that a species with a lower R* for the most limiting resource will competitively displace a species with a higher R* under equilibrium conditions. In a greenhouse, annual sunflower (Helianthus annuus L.), bluebunch wheatgrass (Agropyron spicatum Pursh), and spotted knapweed (Centaurea maculosa Lam.) were grown in monoculture and 2- and 3-species mixtures for three growth periods in an attempt to reduce soil NO3-N concentrations below each species’ R*. At the end of each growth period, aboveground biomass by species and soil plant available nitrogen were sampled. Decreasing biomass coupled with decreasing soil plant available nitrogen was used to quantify R*s for the three species. R*s for annual sunflower, bluebunch wheatgrass, and spotted knapweed were estimated to be 0.6±0.16 ppm NO3, less than 0.05 ppm NO3, and 0.6±0.13 ppm NO3, respectively. Estimated R*s did not predict the outcome of competition among species. To successfully predict plant community dynamics on semi-arid rangeland with and without the presence of a nonindigenous invasive species, a more comprehensive model that includes mechanisms in addition to competition may have to be considered. We speculate that R* theory may prove most useful for predicting the outcome of competition within functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号