首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(+) spark has been implicated as a pivotal feedback mechanism for regulating membrane potential and vasomotor tone in systemic arterial smooth muscle cells (SASMCs), but little is known about its properties in pulmonary arterial smooth muscle cells (PASMCs). Using confocal microscopy, we identified spontaneous Ca(2+) sparks in rat intralobar PASMCs and characterized their spatiotemporal properties and physiological functions. Ca(2+) sparks of PASMCs had a lower frequency and smaller amplitude than cardiac sparks. They were abolished by inhibition of ryanodine receptors but not by inhibition of inositol trisphosphate receptors and L-type Ca(2+) channels. Enhanced Ca(2+) influx by BAY K8644, K(+), or high Ca(2+) caused a significant increase in spark frequency. Functionally, enhancing Ca(2+) sparks with caffeine (0.5 mM) caused membrane depolarization in PASMCs, in contrast to hyperpolarization in SASMCs. Norepinephrine and endothelin-1 both caused global elevations in cytosolic Ca(2+) concentration ([Ca(2+)]), but only endothelin-1 increased spark frequency. These results suggest that Ca(2+) sparks of PASMCs are similar to those of SASMCs, originate from ryanodine receptors, and are enhanced by Ca(2+) influx. However, they play a different modulatory role on membrane potential and are under agonist-specific regulation independent of global [Ca(2+)].  相似文献   

2.
Endothelin-1 (ET-1) increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs); however, the mechanisms for Ca(2+) mobilization are not clear. We determined the contributions of extracellular influx and intracellular release to the ET-1-induced Ca(2+) response using Indo 1 fluorescence and electrophysiological techniques. Application of ET-1 (10(-10) to 10(-8) M) to transiently (24-48 h) cultured rat PASMCs caused concentration-dependent increases in [Ca(2+)](i). At 10(-8) M, ET-1 caused a large, transient increase in [Ca(2+)](i) (>1 microM) followed by a sustained elevation in [Ca(2+)](i) (<200 nM). The ET-1-induced increase in [Ca(2+)](i) was attenuated (<80%) by extracellular Ca(2+) removal; by verapamil, a voltage-gated Ca(2+)-channel antagonist; and by ryanodine, an inhibitor of Ca(2+) release from caffeine-sensitive stores. Depleting intracellular stores with thapsigargin abolished the peak in [Ca(2+)](i), but the sustained phase was unaffected. Simultaneously measuring membrane potential and [Ca(2+)](i) indicated that depolarization preceded the rise in [Ca(2+)](i). These results suggest that ET-1 initiates depolarization in PASMCs, leading to Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from ryanodine- and inositol 1,4,5-trisphosphate-sensitive stores.  相似文献   

3.
Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K(+) current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca(2+) and was sensitive to Ca(2+) channel blockade. Blockade of K(+) channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of -36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K(+) current (I(KH)) that was hypoxia, TEA, and 4-AP sensitive. I(KH) was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was -32 mV, suggesting that I(KH) may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv(1.5), Kv(2.1), and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of I(KH) would contribute to hypoxic-induced contraction in PVSMC.  相似文献   

4.
5.
Hypotonic stimulation induces airway constriction in normal and asthmatic airways. However, the osmolarity sensor in the airway has not been characterized. TRPV4 (also known as VR-OAC, VRL-2, TRP12, OTRPC4), an osmotic-sensitive cation channel in the transient receptor potential (TRP) channel family, was recently cloned. In the present study, we show that TRPV4 mRNA was expressed in cultured human airway smooth muscle cells as analyzed by RT-PCR. Hypotonic stimulation induced Ca(2+) influx in human airway smooth muscle cells in an osmolarity-dependent manner, consistent with the reported biological activity of TRPV4 in transfected cells. In cultured muscle cells, 4alpha-phorbol 12,13-didecanoate (4-alphaPDD), a TRPV4 ligand, increased intracellular Ca(2+) level only when Ca(2+) was present in the extracellular solution. The 4-alphaPDD-induced Ca(2+) response was inhibited by ruthenium red (1 microM), a known TRPV4 inhibitor, but not by capsazepine (1 microM), a TRPV1 antagonist, indicating that 4-alphaPDD-induced Ca(2+) response is mediated by TRPV4. Verapamil (10 microM), an L-type voltage-gated Ca(2+) channel inhibitor, had no effect on the 4-alphaPDD-induced Ca(2+) response, excluding the involvement of L-type Ca(2+) channels. Furthermore, hypotonic stimulation elicited smooth muscle contraction through a mechanism dependent on membrane Ca(2+) channels in both isolated human and guinea pig airways. Hypotonicity-induced airway contraction was not inhibited by the L-type Ca(2+) channel inhibitor nifedipine (1 microM) or by the TRPV1 inhibitor capsazepine (1 microM). We conclude that functional TRPV4 is expressed in human airway smooth muscle cells and may act as an osmolarity sensor in the airway.  相似文献   

6.
Serotonin induced a transient elevation in the levels of cytosolic calcium in cultured rat vascular smooth muscle cells. Ketanserin, a selective antagonist of serotonin 2 receptors, dose-dependently inhibited the elevation of cytosolic calcium induced by serotonin, and ultimately unmasked a serotonin-induced decrease in the levels of cytosolic calcium. These observations show that serotonin has direct and dual effects, that is, it increases and decreases cytosolic free calcium concentrations in vascular smooth muscle cells, in culture. Knowledge of such events is important because serotonergic inhibitors may prove to be useful drugs for treating clinical hypertension and vasospastic disorders.  相似文献   

7.
Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes.  相似文献   

8.
Patients suffering from peripheral vascular disease have been “ultima ratio”-treated with PGI2 at a rate of 5 ng/kg/min for 6 hours a day and 5 consecutive days i.v. 20 of them underwent surgery thereafter as therapy was not sufficient. A histological examination and quantification of vascular tissue revealed that the number of activated smooth muscle cells was significantly lower in treated patients vascular segments than in untreated ones in all the different age groups. A comparable suppression was found in the intima and the media as well. It is thus concluded, that PGI2 inhibits smooth muscle cell proliferation most probably by inhibiting PDGF-release from the platelets and stimulation of smooth muscle cell cAMP. To achieve a more beneficial PGI2-effect at the vascular level, a prolonged PGI2-therapy looks rather promising.  相似文献   

9.
We have previously demonstrated that expression of the atrial natriuretic peptide (ANP) clearance receptor (NPR-C) is reduced selectively in the lung of rats and mice exposed to hypoxia but not in pulmonary arterial smooth muscle cells (PASMCs) cultured under hypoxic conditions. The current study tested the hypothesis that hypoxia-responsive growth factors, fibroblast growth factors (FGF-1 and FGF-2) and platelet-derived growth factor-BB (PDGF-BB), that activate tyrosine kinase receptors can reduce expression of NPR-C in PASMCs independent of environmental oxygen tension. Growth-arrested rat PASMCs were incubated under hypoxic conditions (1% O2) for 24 h; with FGF-1, FGF-2, or PDGF-BB (0.1-20 ng/ml for 1-24 h); or with ANG II (1-100 nM), endothelin-1 (ET-1, 0.1 microM), ANP (0.1 microM), sodium nitroprusside (SNP, 0.1 microM), or 8-bromo-cGMP (0.1 mM) for 24 h under normoxic conditions. Steady-state NPR-C mRNA levels were assessed by Northern blot analysis. FGF-1, FGF-2, and PDGF-BB induced dose- and time-dependent reduction of NPR-C mRNA expression within 1 h at a threshold concentration of 1 ng/ml; hypoxia, ANG II, ET-1, ANP, SNP, or cGMP did not decrease NPR-C mRNA levels in PASMCs under the above conditions. Downregulation of NPR-C expression by FGF-1, FGF-2, and PDGF-BB was inhibited by the selective FGF-1 receptor tyrosine kinase inhibitor PD-166866 and mitogen-activated protein/extracellular signal-regulated kinase inhibitors U-0126 and PD-98059. These results indicate that activation of tyrosine kinase receptors by hypoxia-responsive growth factors, but neither hypoxia per se nor activation of G protein-coupled receptors, inhibits NPR-C gene expression in PASMCs. These results suggest that FGF-1, FGF-2, and PDGF-BB play a role in the signal transduction pathway linking hypoxia to altered NPR-C expression in lung.  相似文献   

10.
Herpesvirus infection has been shown to alter the cholesteryl ester cycle in avian arterial smooth muscle cells, resulting in cytoplasmic cholesteryl ester accumulation (Hajjar, D. P., Falcone, D. J., Fabricant, C. G., and Fabricant, J. (1985) J. Biol. Chem. 260, 6124-6128). In this study, we attempted to define some of the regulatory mechanisms associated with the control of cytoplasmic cholesteryl esterase in Marek's disease herpesvirus (MDV)-infected cells. We found that cholesteryl esterase activity in MDV-infected cells could not be activated by dibutyryl cyclic AMP, dibutyryl cyclic AMP added together with protein kinase, or agonists of adenylate cyclase. Activation of cytoplasmic cholesteryl esterase activity occurred in uninfected cells and in cells infected with a control virus, turkey herpesvirus. Furthermore, the rate of cholesterol efflux from arterial smooth muscle cells challenged with dibutyryl cyclic AMP was unchanged in MDV-infected cells as compared to uninfected or turkey herpesvirus-infected cells in which efflux was increased. We propose that the reduced cytoplasmic cholesteryl esterase activity in lipid-laden, herpesvirus-infected cells is due partly to its inability to be activated by the cyclic AMP-protein kinase mechanism. This may contribute to the pathologic changes seen in MDV-infected arterial cells, including accumulation of intracellular cholesteryl esters.  相似文献   

11.
Patients suffering from peripheral vascular disease have been "ultima ratio"-treated with PGI2 at a rate of 5 ng/kg/min for 6 hours a day and 5 consecutive days i.v. 20 of them underwent surgery thereafter as therapy was not sufficient. A histological examination and quantification of vascular tissue revealed that the number of activated smooth muscle cells was significantly lower in treated patients vascular segments than in untreated ones in all the different age groups. A comparable suppression was found in the intima and the media as well. It is thus concluded, that PGI2 inhibits smooth muscle cell proliferation most probably by inhibiting PDGF-release from the platelets and stimulation of smooth muscle cell cAMP. To achieve a more beneficial PGI2-effect at the vascular level, a prolonged PGI2-therapy looks rather promising.  相似文献   

12.
We have investigated the effect of mineralocorticoids on beta-adrenergic receptors in cultured arterial smooth muscle cells. Mineralocorticoid (aldosterone) treatment resulted in a significant increase in beta-adrenergic receptors measured by [3H]dihydroalprenolol (DHA) binding. This effect required at least 20 hours of incubation with aldosterone and was completely blocked by cycloheximide (10 micrograms/ml), indicating protein synthesis was required for this response. Aldosterone at the concentration range of 10(-8)-10(-6) M increased [3H]DHA binding, but was ineffective at 10(-9) M. Scatchard analysis of [3H]DHA binding revealed that the observed significant increase in binding was due to an increased number of binding sites (P less than 0.05), and that the affinity was unchanged. The aldosterone (1 x 10(-8) M) effect was completely blocked by the combination of RU 38486 (10(-6) M) and spironolactone (10(-7) M), but not by the glucocorticoid antagonist RU 38486 alone. While basal c-AMP levels were not changed by aldosterone (10(-6) M) treatment, the isoproterenol (10(-6) M) stimulated level of c-AMP was significantly higher in cells treated with aldosterone (P less than 0.05). We conclude that aldosterone, acting through the mineralocorticoid receptor, has a direct effect on arterial smooth muscle cells mediated through modulation of beta-adrenergic receptors of these cells.  相似文献   

13.
Vascular smooth muscle cells (VSMCs) are an important origin of foam cells besides macrophages. The mechanisms underlying VSMC foam cell formation are relatively little known. Activation of transient receptor potential vanilloid subfamily 1 (TRPV1) and autophagy have a potential role in regulating foam cell formation. Our study demonstrated that autophagy protected against foam cell formation in oxidized low-density lipoprotein (oxLDL)-treated VSMCs; activation of TRPV1 by capsaicin rescued the autophagy impaired by oxLDL and activated autophagy–lysosome pathway in VSMCs; activation of TRPV1 by capsaicin impeded foam cell formation of VSMCs through autophagy induction; activation of TRPV1 by capsaicin induced autophagy through AMP-activated protein kinase (AMPK) signaling pathway. This study provides evidence that autophagy plays an important role in VSMC foam cell formation and highlights TRPV1 as a promising therapeutic target in atherosclerosis.  相似文献   

14.
15.
Spontaneous transient currents, due to activation of Ca2+-dependent K+ and Cl channels, occur in corpus cavernosum smooth muscle cells (CCSMC) of the penis. The Ca2+ events responsible for triggering Ca2+-dependent Cl channels have never been identified in vascular muscle. We used high-speed fluorescence imaging combined with patch-clamp electrophysiology to provide the first characterization of Ca2+ events underlying these currents. Freshly isolated rat CCSMC loaded with fluo-4 exhibited localized, spontaneous elevations of intracellular Ca2+ (Ca2+ sparks) in 57% of cells. There was an average of 6.4 ± 0.5 release sites/cell with a frequency of 0.9 ± 1 Hz/cell and peak amplitude F/Fo of 67 ± 10%. We addressed the controversy of whether these events are mediated by ryanodine or inositol 1,4,5 trisphosphate (IP3) receptors. Caffeine caused either a global Ca2+ rise at high concentrations or an increase in spark frequency at lower concentrations, whereas ryanodine dramatically reduced the amplitude and frequency of sparks. 2-Aminoethoxydiphenyl borate, an inhibitor of IP3 receptors, had no effect on spark frequency. Combined imaging and electrophysiological recording revealed strong coupling between Ca2+ sparks and biphasic transient currents, a relationship never before shown in vascular muscle. Moreover, spark frequency increased on depolarization, an effect abolished with the blockade of Ca2+ channels, consistent with Ca2+ influx regulating Ca2+ release from stores. We establish for the first time that Ca2+ sparks occur in CCSMC and arise from Ca2+ release through ryanodine receptors. Moreover, the voltage dependence of spark frequency demonstrated here provides novel functional evidence for voltage-dependent Ca2+ influx in CCSMC. calcium signaling; potassium and chloride channels; ryanodine receptors  相似文献   

16.
大鼠细小肺动脉平滑肌细胞原代培养和鉴定方法的研究   总被引:2,自引:0,他引:2  
目的:建立一种重复性好、培养周期短及传代次数多的大鼠细小肺动脉平滑肌细胞(PASMCs)培养方法。方法:在无菌条件下,分离雄性SD大鼠肺细小动脉,剥离外膜和剔除内皮细胞,经胶原酶I消化,培养PASMCs。0.4%台盼蓝染色测定细胞活力;倒置相差显微镜观察;免疫细胞化学法和免疫荧光染色法,进行平滑肌α-肌动蛋白(α-SMactin)鉴定。结果:形态学观察、免疫细胞化学法及免疫荧光染色法鉴定表明培养细胞为PASMCs;细胞存活率在96.5%以上;原代培养后4~7d即可传代,并且生长特点、细胞形态不易发生改变。结论:采用胶原酶I消化法培养PASMCs,方法简单、酶消化时间易控制、培养周期短、重复性好,培养的原代PASMCs具有数量多和生长迅速的特点。  相似文献   

17.
Muscarinic receptor mediated membrane currents and contractions were studied in isolated canine colon circular smooth muscle cells. Carbachol (10(-5) M) evoked a slow transient inward current that was superimposed by a transient outward current at holding potentials greater than -50 mV. Carbachol contracted the cells by 70 +/- 2%. The effects of carbachol were blocked by atropine (10(-6) M), tetraethyl ammonium (20 mM), and BAPTA-AM (25 mM applied for 20 min). The inward current and contraction were not sensitive to diltiazem (10(-5) M), nitrendipine (3 x 10(-7) M), niflumic acid (10(-5) M), or N-phenylanthranilic acid (10(-4) M), but were gradually inhibited after repetitive stimulations in Ca2+ free solution. Ni2+ (2 mM) inhibited the inward current by 67 +/- 4%. The inward current reversed at +15 mV. The outward component could be selectively inhibited by iberiotoxin (20 nM) or by intracellular Cs+. Repeated stimulation in the presence of cyclopiazonic acid (CPA, 3 microM) inhibited the carbachol-induced outward current and partially inhibited contraction. CPA did not inhibit the inward current. In conclusion, muscarinic receptor stimulation evoked a CPA-sensitive calcium release that caused contraction and a CPA-insensitive transient inward current was activated that is primarily carried by Ca2+ ions and is sensitive to Ni2+.  相似文献   

18.
The tone of arterial blood vessels is regulated by the catecholamines through their receptors on arterial smooth muscle cells (ASMC). beta 2-adrenergic receptors of ASMC mediate vasodilation through agonist mediated c-AMP production. Previous reports have described these receptors on freshly isolated blood vessels. This study demonstrates the presence of beta 2-adrenergic receptors on cultured rat ASMC and that these receptors are functional. beta-adrenergic receptor binding was measured using [3H]-dihydroalprenolol (DHA) binding to the membrane of cultured ASMC from normotensive Wistar-Kyoto rats. The ASMC beta-adrenergic receptors have a Kd of 0.56 +/- 0.16 nM and a Bmax of 57.2 +/- 21.7 fmol/mg protein. Competition binding studies revealed a much greater affinity of these receptors for epinephrine than norepinephrine, indicating the preponderance of a beta 2-adrenergic receptor subtype. Isoproterenol stimulation of cultured ASMC resulted in a 14 +/- 7 fold increase in intracellular c-AMP content of these cells indicating these receptors are functional. beta-adrenergic receptors of cultured ASMC provide an excellent system in which the association between hypertension and observed beta-adrenergic receptor differences can be further explored.  相似文献   

19.
Investigating the recruitment and synchronization of smooth muscle cells (SMCs) is the key to understanding the physical mechanisms leading to contraction and spontaneous diameter oscillations of arteries, called vasomotion. We improved a method that allows the correlation of calcium oscillations (flashing) of individual SMCs with mean calcium variations and arterial contraction using confocal microscopy. Endothelium-stripped rat mesenteric arteries were cut open, loaded with dual calcium fluorescence probes, and stimulated by increasing concentrations of the vasoconstrictors phenylephrine (PE) and KCl. We found that the number and synchronization of flashing cells depends on vasoconstrictor concentration. At low vasoconstrictor concentration, few cells flash asynchronously and no local contraction is detected. At medium concentration, recruitment of cells is complete and synchronous, leading to strip contraction after KCl stimulation and to vasomotion after PE stimulation. High concentration of PE leads to synchronous calcium oscillations and fully contracted vessels, whereas high concentration of KCl leads to a sustained nonoscillating increase of calcium and to fully contracted vessels. We conclude that the number of simultaneously recruited cells is an important factor in controlling rat mesenteric artery contraction and vasomotion.  相似文献   

20.

Background

Dexamethasone suppressed inflammation and haemodynamic changes in an animal model of pulmonary arterial hypertension (PAH). A major target for dexamethasone actions is NF-κB, which is activated in pulmonary vascular cells and perivascular inflammatory cells in PAH. Reverse remodelling is an important concept in PAH disease therapy, and further to its anti-proliferative effects, we sought to explore whether dexamethasone augments pulmonary arterial smooth muscle cell (PASMC) apoptosis.

Methods

Analysis of apoptosis markers (caspase 3, in-situ DNA fragmentation) and NF-κB (p65 and phospho-IKK-α/β) activation was performed on lung tissue from rats with monocrotaline (MCT)-induced pulmonary hypertension (PH), before and after day 14–28 treatment with dexamethasone (5 mg/kg/day). PASMC were cultured from this rat PH model and from normal human lung following lung cancer surgery. Following stimulation with TNF-α (10 ng/ml), the effects of dexamethasone (10−8–10−6 M) and IKK2 (NF-κB) inhibition (AS602868, 0–3 μM (0-3×10−6 M) on IL-6 and CXCL8 release and apoptosis was determined by ELISA and by Hoechst staining. NF-κB activation was measured by TransAm assay.

Results

Dexamethasone treatment of rats with MCT-induced PH in vivo led to PASMC apoptosis as displayed by increased caspase 3 expression and DNA fragmentation. A similar effect was seen in vitro using TNF-α-simulated human and rat PASMC following both dexamethasone and IKK2 inhibition. Increased apoptosis was associated with a reduction in NF-κB activation and in IL-6 and CXCL8 release from PASMC.

Conclusions

Dexamethasone exerted reverse-remodelling effects by augmenting apoptosis and reversing inflammation in PASMC possibly via inhibition of NF-κB. Future PAH therapies may involve targeting these important inflammatory pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号