首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
mRNA was isolated from total RNA of monkey liver by oligo(dT)-cellulose chromatography and was translated in a rabbit reticulocyte cell-free system. Analysis of the translation products immunoprecipitated with specific antibodies to monkey plasma plasminogen revealed a molecule with characteristics similar to those of native plasminogen. The purification of the mRNA by centrifugation on sucrose gradients indicated the presence of plasminogen mRNAs in both the 23S and 18S RNA fractions. Both plasminogen mRNAs can be further purified by chromatography on Sepharose 4B. Affinity chromatography of the proteins synthesized in vitro by total mRNA from liver, as well as by the purified mRNAs, on L-lysine-substituted Sepharose revealed that both major plasma plasminogen forms (1 and 2) are synthesized, as precursors, in the system. The in vitro synthesized plasminogen is similar in its physical and chemical properties to native plasma plasminogen as determined by its ability to bind to L-lysine-substituted Sepharose and its molecular interaction with streptokinase. The purified mRNAs were also translated in the presence of dog pancreas microsomal membranes, and and fractionated on concanavalin A-Sepharose. The 23S mRNA directed the synthesis of a plasminogen molecule similar to the circulating plasma plasminogen form 1, whereas the 18S mRNA directed the synthesis of a molecule similar to the circulating plasma plasminogen form 2. Our evidence indicates that the synthesis of the two major circulating plasma plasminogen forms is directed in the liver by separate mRNAs.  相似文献   

3.
A study was made of RNA biosynthesis and maturation in the control and irradiated thymocyte fractions isolated in a ficoll-paque gradient. The post-irradiation impairment of rRNA processing was manifested by the enhancement of pre-rRNA biosynthesis and the increase in 18S rRNA "wastage" during the first hours following X-irradiation. The changes were most pronounced in the thymocyte fraction sedimenting in a gradient zone with the density of above 1.077.  相似文献   

4.
The biosynthesis of proteins, ribosomal RNA and other components of the rat liver protein-synthesizing system during the reparation and subsequent activation of translation inhibited by a sublethal dose cycloheximide (CHI, 3 mg/kg) was studied. It was found that the incorporation of labeled precursors into proteins and ribosomal rRNA isolated from free and membrane-bound polysomes is repaired already 3 hours after CHI injection. 6-9 hours thereafter, the level of component labeling reaches control values, whereas the total protein biosynthesis is retarded. After 12-24 hours, marked stimulation of ribosome biosynthesis and the integration of ribosomes into polysomes are observed together with an asymmetric accumulation of excessive amounts of newly synthesized 40S subunits into polysomes 12 hours after CHI infection. The putative mechanisms of the activation of expression of the part of the genome responsible for protein and ribosomal rRNA synthesis as well as for the synthesis of other components of the protein-synthesizing system are discussed.  相似文献   

5.
Studies on the biosynthesis of neurofilament proteins   总被引:9,自引:3,他引:6       下载免费PDF全文
To determine whether the triplet polypeptides of neurofilaments arise by degradation of precursor, we studied the biosynthesis of neurofilament polypeptides both in vivo and in cell-free systems. Neurofilament-enriched fractions and polyribosomes were prepared from the same rabbit spinal cord homogenates. At 1 h after intracisternal administration of [34S]methionine, radiolabeled neurofilament proteins were detected in spinal cord homogenates as well as in isolated filaments. When polyribosomes from rabbit spinal cord were allowed to incorporate [35S]methionine into protein, triplet polypeptides were among the proteins labeled. Addition of spinal cord polyribosomes to rabbit reticulocyte lysates led to several cycles of translation of the spinal cord mRNA; the three neurofilament polypeptides were among the proteins synthesized in this system. The results demonstrate that the triplet polypeptides of neurofilaments are synthesized as such in the course of individual translational events and do not arise from degradation of P200 or a larger precursor.  相似文献   

6.
Some peculiarities of mRNA translation of ceruloplasmin (CP) from rat liver were investigated, using three cell-free protein biosynthesis systems (wheat embryo extracts, rabbit reticulocyte lysates and Zajdela ascite hepatoma extracts). It was shown that reticulocyte lysates and tumour cell extracts synthesize full-size CP mRNA translation products, whose molecular mass is close to that of mature CP molecules, i. e., 122-132 kD. Wheat embryo extracts synthesize the NH2-terminal fragment of the CP molecule (Mr = 84 kD). Addition of liver membrane fractions to wheat embryo extracts translating CP mRNA results in the reconstitution of proteolytic steps of CP maturation.  相似文献   

7.
5-Aminolevulinic acid synthase (ALA synthase), the rate-controlling enzyme of hepatic heme biosynthesis, is feed-back repressed by heme. In the liver, chemicals such as barbiturates markedly induce ALA synthase, especially in the presence of partial defects of heme biosynthesis. The inducibility and regulation of ALA synthase have been investigated using a variety of models, including intact animals and liver cell culture systems. A widely used model that closely approximates what occurs in vivo and in humans is that of primary cultures of chick embryo liver cells (CELCs). However, CELCs have some limitations: the cells obtained are somewhat heterogeneous; isolation and culture must be repeated every week resulting in weekly variations; and cells are short-lived limiting the feasibility of time-course and transfection studies. The aim of this study was to determine if LMH cells, a chick hepatoma cell line, are a good model comparable to that of CELCs. In both cells similar patterns of response of, ALA synthase activities and mRNA levels, and of porphyrin accumulation were obtained following treatments known to affect heme biosynthesis. Similarly, heme repressed ALA synthase mRNA levels in both cell types and ALA synthase activities in LMH cells. We conclude that LMH cells are a useful model for the study of hepatic heme biosynthesis and regulation of ALA synthase.  相似文献   

8.
A number of chemicals, mostly adenosine analogues, cause the nucleolus of the chick embryo fibroblast to lose material and unravel over a period of several hours into beaded strands termed nucleolar necklaces (NN). The results of analyses of the fibroblasts, treated with the NN-forming chemical dichlororibobenzimidazole (DRB), suggests that the following biochemical alterations occur: DRB almost completely prevents the increase in both messenger RNA (mRNA) and heterogeneous nuclear RNA. It interferes with ribosome synthesis by decreasing the rate of 45S ribosomal RNA (rRNA) accumulation by 50%, slowing the rate of 18S rRNA appearance by 50%, and causing an extensive degradation (80%) of the 32S and 28S rRNA-containing preribisomes. Most of this preribosome degration probably occurs at or before the 32S rRNA preribosome stage. The degradation of these preribosomes appears to be due to the formation of defective 45S rRNA preribosomes rather than to a direct DRB interference with preribosome processing enzyme action. DRB inhibits total cellular RNA synthesis in less than 15 min, suggesting a direct interference with RNA synthesis. DRB also inhibits the uptake of nucleosides into the cell. DRB in the concentrations used does not appear to directly interfere with the translation of mRNA (i.e., protein synthesis). Other NN-forming adenoside analogues and high concentrations of adenosine (2 mM) cause biochemical alterations similar to those produced by DRB. To explain the preribosome degradation, we propose the hypothesis that DRB inhibits the synthesis of mRNA; as a consequence, some of the preribosomal proteins that normally coat the 32S rRNA portion of the 45S precursor RNA become limiting, and this defective portion is then subject to degradation by nucleases.  相似文献   

9.
Inhibition of protein synthesis (up to 95%) in starved rat liver cells after a single injection of a sublethal dose of cycloheximide (0.3 mg per 100 g of body weight) results in degradation of 18S rRNA during the first 3 hours, whereas the 28S rRNA remains unaffected. However, the increase of 28S rRNA degradation products was observed by the 6th and 12th hours. The rapid decay of 18S rRNA is due to the degradation of this RNA in 40S ribosomal subunits. In contrast to 28S rRNA the specific radioactivity of 18S rRNA is increased by the 6th hour. Presumably the synthesis and processing of 18S rRNA impaired during the 1st hour are recovered partially or completely by this time. A molecular mechanism underlying 18S rRNA degradation in 40S ribosomal subunits is proposed.  相似文献   

10.
The liver plays a central role in regulating cholesterol homeostasis. High fat diets have been shown to induce obesity and hyperlipidemia. Despite considerable advances in our understanding of cholesterol metabolism, the regulation of liver cholesterol biosynthesis in response to high fat diet feeding has not been fully addressed. The aim of the present study was to investigate mechanisms by which a high fat diet caused activation of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) leading to increased cholesterol biosynthesis. Mice were fed a high fat diet (60% kcal fat) for 5 weeks. High fat diet feeding induced weight gain and elevated lipid levels (total cholesterol and triglyceride) in both the liver and serum. Despite cholesterol accumulation in the liver, there was a significant increase in hepatic HMG-CoA reductase mRNA and protein expression as well as enzyme activity. The DNA binding activity of sterol regulatory element binding protein (SREBP)-2 and specific protein 1 (Sp1) were also increased in the liver of mice fed a high fat diet. To validate the in vivo findings, HepG2 cells were treated with palmitic acid. Such a treatment activated SREBP-2 as well as increased the mRNA and enzyme activity of HMG-CoA reductase leading to intracellular cholesterol accumulation. Inhibition of Sp1 by siRNA transfection abolished palmitic acid-induced SREBP-2 and HMG-CoA reductase mRNA expression. These results suggest that Sp1-mediated SREBP-2 activation contributes to high fat diet induced HMG-CoA reductase activation and increased cholesterol biosynthesis. This may play a role in liver cholesterol accumulation and hypercholesterolemia.  相似文献   

11.
12.
De novo pyrimidine biosynthesis is activated in proliferating cells in response to an increased demand for nucleotides needed for DNA synthesis. The pyrimidine biosynthetic pathway in baby hamster kidney cells, synchronized by serum deprivation, was found to be up-regulated 1.9-fold during S phase and subsequently down-regulated as the cells progressed through the cycle. The nucleotide pools were depleted by serum starvation and were not replenished during the first round of cell division, suggesting that the rate of utilization of the newly synthesized nucleotides closely matched their rate of formation. The activation and subsequent down-regulation of the pathway can be attributed to altered allosteric regulation of the carbamoyl-phosphate synthetase activity of CAD (carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase), a multifunctional protein that initiates mammalian pyrimidine biosynthesis. As the culture approached S-phase there was an increased sensitivity to the allosteric activator, 5-phosphoribosyl-1-pyrophosphate, and a loss of UTP inhibition, changes that were reversed when cells emerged from S phase. The allosteric regulation of CAD is known to be modulated by MAP kinase (MAPK) and protein kinase A (PKA)-mediated phosphorylations as well as by autophosphorylation. CAD was found to be fully autophosphorylated in the synchronized cells, but the level remained invariant throughout the cycle. Although the MAPK activity increased early in G(1), the phosphorylation of the CAD MAPK site was delayed until just before the onset of S phase, probably due to antagonistic phosphorylation by PKA that persisted until late G(1). Once activated, pyrimidine biosynthesis remained elevated until rephosphorylation of CAD by PKA and dephosphorylation of the CAD MAPK site late in S phase. Thus, the cell cycle-dependent regulation of pyrimidine biosynthesis results from the sequential phosphorylation and dephosphorylation of CAD under the control of two important signaling cascades.  相似文献   

13.
Rate of basement membrane biosynthesis as an index to angiogenesis   总被引:6,自引:0,他引:6  
A method was developed for assessing collagenous protein biosynthesis from [U-14C]proline in relation to angiogenesis in the chick chorioallantoic membrane (CAM). The rate of collagenous protein biosynthesis both in vitro and in vivo was maximum between days 8 and 11 of chick embryo development. This was the stage of maximum angiogenesis as shown by morphological evaluation of the vascular density. At day 10 the rate of collagenous protein biosynthesis was 11-fold higher than that of day 15, when angiogenesis had reached a plateau. The collagenous protein formed by CAM co-elutes on SDS-agarose chromatography with the collagenous component of [3H]-acetylated-basement membrane (BM) from bovine lens capsule. 8,9-dihydroxy-7-methyl-benzo[b]quinolizinium bromide (GPA1734), which was shown previously to be a specific inhibitor of BM collagen biosynthesis, caused about 80% reduction in collagenous protein synthesis by CAM. These results indicate that most of the collagenous protein synthesized by CAM was BM collagen and this can be used as a biochemical index of angiogenesis.  相似文献   

14.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

15.
The effect of insulin on protein biosynthesis was examined in differentiated 3T3-L1 and 3T3-F442A adipocytes. Insulin altered the relative rate of synthesis of specific proteins independent of its ability to hasten conversion of the fibroblast (preadipocyte) phenotype to the adipocyte phenotype. Although more than one pattern of response to insulin was observed, we focused on the induction of a Mr 33,000 protein which was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Exposure of 3T3 adipocytes to insulin throughout differentiation specifically increased GAPDH activity and protein content by 2- to 3-fold as compared to 3T3 adipocytes differentiated in the absence of insulin. These changes in enzyme activity and content could be accounted for by a 4-fold increase in the relative rate of synthesis of GAPDH and a 9-fold increase in hybridizable mRNA levels. Within 2 h of insulin addition to 3T3 adipocytes differentiated in the absence of hormone, hybridizable GAPDH mRNA levels increased 3-fold, and within 24 h GAPDH mRNA levels increased 8-fold, and [35S] methionine incorporation into GAPDH protein increased 5-fold. The increase in GAPDH mRNA and GAPDH biosynthesis could be demonstrated using physiologic concentrations of insulin (0.24 nM), indicating that these effects are mediated through a specific interaction with the insulin receptor. These studies demonstrate that insulin, as the sole hormonal perturbant, can increase the synthesis of certain 3T3 adipocyte proteins by altering the cellular content of a specific mRNA.  相似文献   

16.
Both myosin mRNA (26 S) and globin mRNA (9 S) have been bound to activated Sepharose 4B. The affinity of initiation factors derived from native 40 S ribosomal subunits from embryonic chick muscle for these messengers has been determined. Although both messengers bind the major components of the muscle factor preparation with the same affinity, some differences are noted in the minor components. There is an enrichment of components which bind myosin mRNA with a high affinity when the 15–18 S initiation factor complex is prepared from initiating 40 S ribosomal subunits found on myosin synthesizing polysomes rather than from total cellular factor preparations. The proteins which have a high binding affinity to myosin mRNA also have a discriminating effect when added to a wheat germ system containing myosin and globin mRNA. This is demonstrated by the fact that the synthesis of myosin heavy chain is specifically stimulated and the number of ribosomes found on myosin mRNA increase five to seven-fold; whereas neither the synthesis of globin nor the number of ribosomes associated with globin mRNA is increased. The components of an impure reticulocyte eukaryotic initiation factor 3 prepared in a similar manner as the muscle factor, do not bind myosin mRNA with the same high affinity, and these fractions separated on the myosin mRNA affinity column did not show a discriminatory effect. These results suggest that specific components of muscle 15–18 S initiation factor preparations have a higher binding affinity for myosin mRNA than globin mRNA and that these proteins may be those factors previously reported to be present which discriminate between mRNAs.  相似文献   

17.
Affinity adsorption on immobilized DNAase I and the measurements of the protein mobility upon SDS-PAGE electrophoresis were used for the identification of the actin-like protein as well as for the study of its biosynthesis is liver mitochondria of hepatectomized rats. The kinetics of biosynthesis showed a maximum on the 10th min after intraperitoneal injection of the label. Fractionation of mitochondria demonstrated that more than 50% of the whole amount of the "de novo" synthesized protein is localized in the intermembrane space, approximately 30%--in the mitochondrial matrix. The purity of the fractions was controlled by analyzing the polypeptide content of the samples and by measuring the marker enzyme activity. Besides, additional identification of the actin-like protein was carried out directly in the mitochondrial matrix and intermembrane space by two-dimensional electrophoresis in polyacrylamide gel performed by the O'Farrell method. The subsequent staining of the gels with silver revealed the presence of two basic isoforms of non-muscle action (beta- and gamma-actins). The presence of the actin-like protein in the inner mitochondrial compartments characterized by a high rate of metabolism may be regarded as compelling evidence of its mitochondrial localization.  相似文献   

18.
19.
K D Sarge  E S Maxwell 《FEBS letters》1991,294(3):234-238
We have previously shown that a 5'-terminal region of mouse 5 S rRNA can base-pair in vitro with two distinct regions of 18 S rRNA. Further analysis reveals that these 5 S rRNA-complementary sequences in 18 S rRNA also exhibit complementarity to the Kozak consensus sequence surrounding the mRNA translational start site. To test the possibility that these 2 regions in 18 S rRNA may be involved in mRNA binding and translational initiation, we have tested, using an in vitro translation system, the effects of DNA oligonucleotides complementary to these 18 S rRNA sequences on protein synthesis. Results show that an oligonucleotide complementary to one 18 S rRNA region does inhibit translation at the step of initiation. We propose a Competitive-Displacement Model for the initiation of translation involving the intermolecular base-pairing of 5 S rRNA, 18 S rRNA and mRNA.  相似文献   

20.
It is established that with partial hepatectomy, Shvets leukosis and hepatoma RS-1 the biosynthesis intensity of rat blood serum proteins producing aggregates in the acid medium is considerably higher than that of other serum proteins, the incorporation of the radioactive precursor into immunoglobulin G peculiar to intensive normal and malignant growth being particularly intensive. During liver regeneration as well as in malignant growth specific radioactivity of immunoglobulin G peculiar to the growth processes is three and five times, respectively, as high as this value for blood serum soluble proteins and proteins of alpha-globulin fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号