首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bifunctional enzyme CoA synthase can be nicked by trypsin without loss of its activities. The original dimer of subunit Mr approx. 61 000 yields fragments of Mr 41 000 and 22 000 as seen on gel electrophoresis in the presence of SDS, but the nicked enzyme retains the native Mr of 118 000. Further proteolysis occurs rapidly in the absence of protecting substrates. The N-terminal of native CoA synthase is proline, and proteolysis exposes glycine as a second N-terminal. This evidence strongly suggests that the subunits are identical.  相似文献   

2.
Microvillus aminopeptidase (EC 3.4.11.2) is an enzyme with a molecular weight around 300 000. Normal preparations contain three different subunits (subunit A, Mr 162 000; subunit B, Mr 123 000; subunit C, Mr 61 000). The relationship between the three subunits was studied by immunoelectrophoresis using specific antibodies against individual denatured subunits and by densitometric scanning of polyacrylamide gels after separation of the three subunits. The results suggest that microvillus aminopeptidase initially appears in the membrane as a symmetric molecule built up to two identical A subunits. These subunits are then split into equimolar amounts of subunit B and subunit C by trypsin. Subunit B cannot generate subunit C but may be further degraded. The reaction sequence described is one which occurs in vivo. Treatment of purified aminopeptidase with trypsin increases the specific activity twofold. This phenomenon does not seem to be correlated to the generation of subunit B and subunit C or to the transformation of amphiphilic form into hydrophilic form.  相似文献   

3.
The transmembrane topology of the nucleoside transporter of human erythrocytes, which had been covalently photolabelled with [3H]nitrobenzylthioinosine, was investigated by monitoring the effect of proteinases applied to intact erythrocytes and unsealed membrane preparations. Treatment of unsealed membranes with low concentrations of trypsin and chymotrypsin at 1 degree C cleaved the nucleoside transporter, a band 4.5 polypeptide, apparent Mr 66 000-45 000, to yield two radioactive fragments with apparent Mr 38 000 and 23 000. The fragment of Mr 38 000, in contrast to the Mr 23 000 fragment, migrated as a broad peak (apparent Mr 45 000-31 000) suggesting that carbohydrate was probably attached to this fragment. Similar treatment of intact cells under iso-osmotic saline conditions at 1 degree C had no effect on the apparent Mr of the [3H]nitrobenzylthioinosine-labelled band 4.5, suggesting that at least one of the trypsin cleavage sites resulting in the apparent Mr fragments of 38 000 and 23 000 is located at the cytoplasmic surface. However, at low ionic strengths the extracellular region of the nucleoside transporter is susceptible to trypsin proteolysis, indicating that the transporter is a transmembrane protein. In contrast, the extracellular region of the [3H]cytochalasin B-labelled glucose carrier, another band 4.5 polypeptide, was resistant to trypsin digestion. Proteolysis of the glucose transporter at the cytoplasmic surface generated a radiolabelled fragment of Mr 19 000 which was distinct from the Mr 23 000 fragment radiolabelled with [3H]nitrobenzylthioinosine. The affinity for the reversible binding of [3H]cytochalasin B and [3H]nitrobenzylthioinosine to the glucose and nucleoside transporters, respectively, was lowered 2-3-fold following trypsin treatment of unsealed membranes, but the maximum number of inhibitor binding sites was unaffected despite the cleavage of band 4.5 to lower-Mr fragments.  相似文献   

4.
An active tryptic fragment of membrane-bound hydrogenase isoenzyme 2 from anaerobically grown Escherichia coli has been purified. The soluble enzyme derivative was released from the membrane fraction by trypsin cleavage. The purification procedure involved ion-exchange, hydroxyapatite and gel permeation chromatography. The enzyme derivative was purified 100-fold from the membrane fraction and the specific activity of the final preparation was 320 mumol benzyl viologen reduced min-1 mg protein-1 (H2:benzyl viologen oxidoreductase). The native enzyme derivative had an Mr of 180,000 and was composed of equimolar amounts of polypeptides of Mr 61,000 and 30,000. It possessed 12.5 mol Fe, 12.8 mol acid-labile S2- and 3.1 mol Ni/180,000 g enzyme. Antibodies were raised to the purified preparation which cross-reacted with hydrogenase isoenzyme 2 but not with isoenzyme 1 in detergent-dispersed preparations. Western immunoblot analysis revealed that isoenzyme 2 which had not been exposed to trypsin contained cross-reacting polypeptides of Mr 61,000 and 35,000. Trypsin treatment of the membrane-bound enzyme to form the soluble derivative of isoenzyme 2, therefore, cleaves a polypeptide of Mr 35,000 to produce the 30,000-Mr fragment. Trypsin treatment of the detergent-dispersed isoenzyme 2 produces the same fragmentation of the enzyme. Neither of the subunits of the enzyme revealed any immunological identity with those of hydrogenase isoenzyme 1.  相似文献   

5.
The pyridine nucleotide transhydrogenase of Escherichia coli has an alpha 2 beta 2 structure (alpha: Mr, 54,000; beta: Mr, 48,700). Hydropathy analysis of the amino acid sequences suggested that the 10 kDa C-terminal portion of the alpha subunit and the N-terminal 20-25 kDa region of the beta subunit are composed of transmembranous alpha-helices. The topology of these subunits in the membrane was investigated using proteolytic enzymes. Trypsin digestion of everted cytoplasmic membrane vesicles released a 43 kDa polypeptide from the alpha subunit. The beta subunit was not susceptible to trypsin digestion. However, it was digested by proteinase K in everted vesicles. Both alpha and beta subunits were not attacked by trypsin and proteinase K in right-side out membrane vesicles. The beta subunit in the solubilized enzyme was only susceptible to digestion by trypsin if the substrates NADP(H) were present. NAD(H) did not affect digestion of the beta subunit. Digestion of the beta subunit of the membrane-bound enzyme by trypsin was not induced by NADP(H) unless the membranes had been previously stripped of extrinsic proteins by detergent. It is concluded that binding of NADP(H) induces a conformational change in the transhydrogenase. The location of the trypsin cleavage sites in the sequences of the alpha and beta subunits were determined by N- and C-terminal sequencing. A model is proposed in which the N-terminal 43 kDa region of the alpha subunit and the C-terminal 30 kDa region of the beta subunit are exposed on the cytoplasmic side of the inner membrane of E. coli. Binding sites for pyridine nucleotide coenzymes in these regions were suggested by affinity chromatography on NAD-agarose columns.  相似文献   

6.
The sensitivity of the membrane-bound hydrogenase of Bradyrhizobium japonicum to inactivation by proteases and membrane-impermeant protein modification reagents was compared under hydrogen versus oxygen. In membrane vesicles, the half-life of enzyme inactivation by trypsin of the H2-reduced enzyme was approximately 10 min, whereas O2-oxidized enzyme was much less sensitive to trypsin inactivation (half-life of over 90 min). Diazobenzene sulfonate (DABS) affected the enzyme activity in a manner similar to proteases. With DABS, the enzyme had a half-life of 2-3 min under H2 versus over 30 min under O2. Experiments in which the gas phase (containing either H2 or O2) available to the membranes was changed prior to the protease or chemical modification treatments indicated that it is the redox state of the enzyme at the time of the treatment which determines the sensitivity of the enzyme to inactivation. The redox-dependent differences in the behavior of the membrane-bound enzyme were attributed to changes in the accessibility of the small (33 kDa) subunit. The kinetics of enzyme inactivation by trypsin, under H2, correlated very well with the degradation of the intact 33-kDa subunit, whereas the large subunit (65 kDa) was rather resistant to proteolytic degradation. DABS treatment was found to decrease the reactivity of the small subunit to its antibody concomitant with enzyme inactivation under H2, but without such an effect on the O2-oxidized enzyme. In contrast to the results with the membrane-bound enzyme, purified dehydrogenase was found to be equally susceptible to inactivation by proteolysis or chemical modification irrespective of whether the treatments were performed under H2 or O2. These results indicate that, in the membrane, hydrogenase undergoes a redox-linked conformational change, whereby the small subunit of the enzyme becomes more accessible to external reagents when the enzyme is in its reduced form.  相似文献   

7.
D-Alanine carboxypeptidase (CPase), a detergent-soluble penicillin-sensitive membrane enzyme of Bacillus stearothermophilus, Mr = 46,500, was digested with either trypsin or alpha-chymotrypsin to yield water-soluble fragments, designated T-CPase and Chy-CPase, respectively, each of Mr = approximately 45,000. These fragments were generated and purified in milligram quantities by digestion of CPase covalently immobilized on a penicillin affinity column. They retained full enzymatic activity, became significantly more resistant to thermal inactivation, and lost micellar detergent binding upon proteolysis. Each was derived from CPase by loss of a COOH-terminal hydrophobic peptide. CPase was reconstituted into bacterial lipid vesicles in an enzymatically active form. Penicillin-binding sites were equally distributed on both sides of the lipid bilayer, suggesting a random orientation of the CPase molecules. Neither T-CPase nor Chy-CPase reconstituted into lipid vesicles when treated in an identical manner. CPase was slowly cleaved from the surface of these vesicles by either trypsin or alpha-chymotrypsin, yielding T-CPase and Chy-CPase, respectively. These results demonstrate that CPase is comprised of a water-soluble catalytic domain and a COOH-terminal hydrophobic region which mediates the anchoring of this enzyme to the bacterial membrane.  相似文献   

8.
Phenylalanine ammonia-lyase (EC 4.3.1.5) of the yeast Rhodotorula glutinis was rapidly inactivated by duodenal juice. It was susceptible to chymotrypsin and subtilisin and to a lesser extent trypsin. Initial proteolysis of the enzyme by chymotrypsin and trypsin resulted in cleavage of the monomeric subunit (75 000 Mr) into a large (65 000 Mr) and a small (10 000 Mr) peptide. The small peptide was rapidly degraded. The 65 000-Mr fragment was resistant to prolonged incubation with chymotrypsin, but was degraded by trypsin under the same conditions. Phenylalanine ammonia-lyase was cleaved into several polypeptides by subtilisin, the 65 000-Mr peptide being totally absent. The N-terminal region of the enzyme was contained in the 65 000-Mr fragment, as was the dehydroalanine moiety, the prosthetic group. Active-site-binding ligands protect the enzyme from inactivation by the three proteinases, and peptide-bond cleavage by trypsin and chymotrypsin. Several chemical modifications were performed on phenylalanine ammonia-lyase. Some decreased its antigenicity, and ethyl acetimidate decreased the rate of degradation of the 65 000-Mr peptide by trypsin. The modification did not protect the enzyme from proteolytic inactivation of the enzymic activity. These observations are discussed in terms of the structure of phenylalanine ammonia-lyase and site of action of the proteinases.  相似文献   

9.
Methionyl-tRNA synthetase (MetRS) has been described as a free monomeric or oligomeric enzyme; or included in a multienzyme complex. Moreover, on limited tryptic digestion, it can generate shorter forms. So, when purified from wheat-germ lysate, the possible presence of proteases able to hydrolyse this enzyme was investigated. When extraction was performed with sulfhydryl-blocking reagents, an active monomeric MetRS of Mr 105,000 was purified. This enzyme form was identical to the structure exhibiting methionyl-tRNA synthetase activity in multienzyme complexes. Without this inhibitor, MetRS was purified as an active dimeric form of Mr 165,000 with identical subunits of Mr 82,000. A protease inhibited by sulfhydryl-blocking reagents and included in a complex of Mr 2.10(6) was isolated from this wheat-germ lysate. This protease was able to hydrolyse different proteins (albumin, casein), but was without activity for a trypsin substrate, such as N-alpha-benzoyl-DL-arginine p-nitroanilide. When added to a solution of Mr-105,000 MetRS, it yielded an inactive peptide of Mr 20,000, containing numerous charged amino acids and a protein of Mr 82,000, able to give an active dimeric enzyme of Mr 165,000. Amino acid analysis of this last form, indicated an identical structure with the active dimeric MetRS of Mr 165,000, purified in the absence of protease inhibitors. Moreover, the affinity for methionine was the same for the monomeric enzyme of Mr 105,000 and the dimeric form of Mr 165,000, probably because proteolysis did not affect the catalytic domain. When enzymic activity of the proteolyzed form (Mr 2 x 82,000) was studied versus enzyme concentration, a decrease in specific activity, at low concentrations, was seen. This phenomenon was analysed on the basis of the existence of an equilibrium between an active dimer and two inactive monomers. With the active monomeric form of Mr 105,000, no change in specific activity with decreasing enzyme concentration occurred.  相似文献   

10.
11.
The ion-gating ability and the protein electrophoretic band patterns of the acetylcholine receptor from Torpedo californica electroplax were examined after receptor-enriched membrane vesicles were progressively heated. The ion translocation function was lost over a temperature range of 40-55 degrees C. Previous results have shown that the stoichiometry of alpha-bungarotoxin binding is not affected by these temperatures, although bound toxin reversibly dissociates within this temperature range, and that toxin binding is irreversibly lost at somewhat higher temperatures [Soler, G., Farach, M.C., Farach, H. A., Jr., Mattingly, J.R., Jr., & Martinez-Carrion, M. (1983) Arch. Biochem. Biophys. 225, 872]. Thermal gel analysis [Lysko, K. A., Carlson, R., Taverna, R., Snow, J., & Brandts, J.F. (1981) Biochemistry 20, 5570], a sodium dodecyl sulfate-polyacrylamide gel electrophoretic procedure which detects thermally induced aggregation of the components of multimeric systems, was applied to heated acetylcholine receptor enriched membranes. This technique suggests two structural domains susceptible to thermal perturbation within the receptor molecule, one consisting of the Mr 50 000 and the two Mr 40 000 subunits and the other consisting of the Mr 60 000 and 65 000 subunits. Heat disrupts molecular events linking agonist binding with ion-channel opening in the acetylcholine receptor molecule.  相似文献   

12.
Protease digestion of acetylcholine receptor-rich membranes derived from Torpedo californica electroplaques by homogenization and isopycnic centrifugation results in degradation of all receptor subunits without any significant effect on the appearance in electron micrographs, the toxin binding ability, or the sedimentation value of the receptor molecule. Such treatment does produce dramatic changes in the morphology of the normally 0.5- to 2-microns-diameter spherical vesicles when observed by either negative-stain or freeze-fracture electron microscopy. Removal of peripheral, apparently nonreceptor polypeptides by alkali stripping (Neubig et al. 1979, Proc. Natl. Acad. Sci. U. S. A. 76:690-694) results in increased sensitivity of the acetylcholine receptor membranes to the protease trypsin as indicated by SDS gel electrophoretic patterns and by the extent of morphologic change observed in vesicle structure. Trypsin digestion of alkali- stripped receptor membranes results in a limit degradation pattern of all four receptor subunits, whereupon all the vesicles undergo the morphological transformation to minivesicles. The protein-induced morphological transformation and the limit digestion pattern of receptor membranes are unaffected by whether the membranes are prepared so as to preserve the receptor as a disulfide bridged dimer, or prepared so as to generate monomeric receptor.  相似文献   

13.
A catalytically active Mr 90 000 fragment was generated from native Mr 140 000 human plasma angiotensin-I-converting enzyme after treatment with reagents that induced a perturbation of the native tertiary conformation. Treatment of converting enzyme with 6 M urea produced an aggregation of molecules that was susceptible to proteolysis by either trypsin, chymotrypsin or Staphylococcus aureus V8 proteinase to generate the Mr 90 000 converting enzyme. Also, 1 M ammonium hydroxide, pH 11.3, or 0.01 M sodium hydroxide, pH 11.3, cleaved converting enzyme to the Mr 90 000 fragment. Degradation was not an autocatalytic phenomenon, since it was not prevented by inhibition of converting enzyme with EDTA. The enzymatically mediated, but not the alkaline mediated, cleavage was inhibited by specific converting enzyme inhibitors captopril and Merck L-154,826. This suggests that captopril and Merck L-154,826 can prevent converting-enzyme degradation by preserving a conformation that does not have sites exposed to proteolytic enzymes. This conformation may mimic the native conformation which is quite resistant to serine proteinases.  相似文献   

14.
Torpedo acetylcholine receptor (AcChR) exists predominantly as dimers, formed by two monomers held together by a disulfide bridge(s). The dimers are easily cleaved to monomers by reducing agents. 2-mercaptoethanesulfonic acid is shown to be a membrane-impermeant reducing agent which cleaves receptor dimers when it is present only on the outside of intact membrane vesicles. There is no increase in the extent of cleavage when 2-mercaptoethanesulfonic acid is also loaded inside the vesicles. Therefore the disulfide bond(s) involved in the dimerization of the Torpedo acetylcholine receptor is (are) formed by cysteine residues which are exposed on the extracellular side of the membrane.  相似文献   

15.
ATPase (EC 3.6.1.3) of Escherichia coli has been solubilized from two morphologically distinct membranes (vesicles and “ghosts”). Maximum ATPase release is attained with 3 mM EDTA in NH4HCO3, pH 9.0, and depends on protein concentration. After solubilization, the total enzyme activity is increased by 300% with respect to the membrane-bound enzyme. The released soluble ATPase accounts for more than 90% of this activity. Its specific activity is at least 10 times higher than the original value. Membrane treatment with buffers of various ionic strengths without EDTA and detergents is less selective. The molecular sieving properties (gel electrophoresis and Sephadex G-200 filtration) confirm the soluble nature of the preparation. A molecular weight close to 300 000 has been estimated for it.The membrane-bound ATPase is stimulated by trypsin by 70–100%. Most of the soluble ATPase maintains a trypsin activation of the same order. Exceptions are the preparations obtained at high protein dilution and extracted with sodium dodecyl sulphate and deoxycholate. The soluble ATPase is more labile than the membrane-bound enzyme. Its sensitivity to different temperatures depends upon protein concentration and pH during storage. Inactivation seems to result from dissociation and/or proteolysis.We suggest an ATPase link to the membrane through ionic divalent cation bridges. We also suggest that the enzyme possesses self-regulatory properties which would account for trypsin stimulation.  相似文献   

16.
Rough microsomes were incubated in an in vitro amino acid-incorporating system for labeling the nascent polypeptide chains on the membrane-bound ribosomes. Sucrose density gradient analysis showed that ribosomes did not detach from the membranes during incorporation in vitro. Trypsin and chymotrypsin treatment of microsomes at 0° led to the detachment of ribosomes from the membranes; furthermore, trypsin produced the dissociation of released, messenger RNA-free ribosomes into subunits. Electron microscopic observations indicated that the membranes remained as closed vesicles. In contrast to the situation with free polysomes, nascent chains contained in rough microsomes were extensively protected from proteolytic attach. By separating the microsomal membranes from the released subunits after proteolysis, it was found that nascent chains are split into two size classes of fragments when the ribosomes are detached. These were shown by column chromatography on Sephadex G-50 to be: (a) small (39 amino acid residues) ribosome-associated fragments and (b) a mixture of larger membrane-associated fragments excluded from the column. The small fragments correspond to the carboxy-terminal segments which are protected by the large subunits of free polysomes. The larger fragments associated with the microsomal membranes depend for their protection on membrane integrity. These fragments are completely digested if the microsomes are subjected to proteolysis in the presence of detergents. These results indicate that when the nascent polypeptides growing in the large subunits of membrane-bound ribosomes emerge from the ribosomes they enter directly into a close association with the microsomal membrane.  相似文献   

17.
B M Curtis  W A Catterall 《Biochemistry》1986,25(11):3077-3083
The purified calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubule membrane consists of three subunits: alpha with Mr 135 000, beta with Mr 50 000, and gamma with Mr 33 000. Purified receptor preparations were incorporated into phosphatidylcholine (PC) vesicles by addition of PC in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and removal of detergent by molecular sieve chromatography. Forty-five percent of the alpha, beta, and gamma polypeptides and the [3H]dihydropyridine/receptor complex were recovered in association with PC vesicles. The rate of dissociation of the purified and reconstituted dihydropyridine/receptor complex was identical with that in T-tubule membranes, and allosteric modulation by verapamil and diltiazem was retained. The reconstituted calcium antagonist receptor, when occupied by the calcium channel activator BAY K 8644, mediated specific 45Ca2+ and 133Ba2+ transport into the reconstituted vesicles. 45Ca2+ influx was blocked by the organic calcium antagonists PN200-110 (K0.5 = 0.2 microM), D600 (K0.5 = 1.0 microM), and verapamil (K0.5 = 1.5 microM) and by inorganic calcium channel antagonists (La3+ greater than Cd2+ greater than Ni2+ greater than Mg2+) as in intact T-tubules. A close quantitative correlation was observed between the presence of the alpha, beta, and gamma subunits of the calcium antagonist receptor and the ability to mediate 45Ca2+ or 133Ba2+ flux into reconstituted vesicles. Comparison of the number of reconstituted calcium antagonist receptors and functional channels supports the conclusion that only a few percent of the purified calcium antagonist receptor polypeptides are capable of mediating calcium transport as previously demonstrated for calcium antagonist receptors in intact T-tubules.  相似文献   

18.
V Witzemann  M A Raftery 《Biochemistry》1977,16(26):5862-5868
A bisazido derivative was synthesized from bis(3-aminopyridinium)-1,10-decane diiodide and it was shown that it was bound (KD congruent to 2.2 muM) specifically to purified acetylcholine receptor and fulfilled the requirements for a photoaffinity label. Like the parent compound the derivative could transform membrane-bound receptor from a low ligand affinity conformation(s) to a high ligand affinity form (s), a transition which is thought to resemble desensitization processes observed in vivo. Photolysis of 3H-labeled bisazido reagent was carried out in the presence of the receptor. After dodecyl sulfate-polyacrylamide gel electrophoresis of labeled purified receptor two of the four subunits (mol wt 40 000 and 60 000) contained 90% of the bound radioactivity while for membrane-bound receptor the subunits of mol wt 40 000 and 50 000 were labeled. The results favor the assumption that the specific ligand binding sites are located on mol wt 40 000 subunits and labeling of the other subunits reflects (a) their proximity to the ligand-binding site and (b) alterations in subunit topography between membrane-bound and solubilized states.  相似文献   

19.
Yeast phosphofructokinase was subjected to limited proteolysis by trypsin in the presence of different effectors. It could be demonstrated that the substrates MgATP and fructose-6-phosphate are able to protect the enzyme from inactivation by trypsin. Other effectors like AMP, ADP, phosphoenolpyruvate, citrate and ammonium ions exhibit only negligible effects. During the first step of degradation consisting in the conversion of the subunits from Mr 120,000 to 90,000 no significant effects of the substrates and effectors on the proteolytic inactivation of yeast phosphofructokinase can be observed. In the presence of ATP as well as of ADP the sensitivity of the enzyme against ATP inhibition is either not or only slightly influenced by proteolytic modification. The modified enzyme retains its sensitivity against activation by AMP, independently of whether effectors are present or absent during proteolysis. The kinetic parameters of the enzyme modified by subtilisin in the presence of ATP or of fructose-6-phosphate have been determined.  相似文献   

20.
The portion of the mannose 6-phosphate receptor (nominal Mr 180000 under nonreducing conditions) protruding at the external side of the plasma membrane of fibroblasts and HepG2 cells is susceptible to trypsin. A series of membrane-bound fragments smaller in Mr by 20000-65000 is obtained after incubation of cells with trypsin. When membranes from fibroblasts and HepG2 cells are incubated with trypsin or Staphylococcus aureus proteinase, the receptor is degraded to a single membrane-bound product smaller in Mr by about 9000. In the presence of 0.1% Triton X-100 extensive degradation of the receptor by trypsin is observed. Furthermore, the receptor in isolated membranes is sensitive to carboxypeptidase Y, which causes a decrease in Mr by about 5000 and 9000 in the absence or presence of detergent, respectively. Mannose 6-phosphate receptor appears to be a transmembrane protein with multiple trypsin-sensitive sites within its larger external (luminal) and smaller C-terminal (cytosolic) portions of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号