首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major focus of systems biology is to characterize interactions between cellular components, in order to develop an accurate picture of the intricate networks within biological systems. Over the past decade, protein microarrays have greatly contributed to advances in proteomics and are becoming an important platform for systems biology. Protein microarrays are highly flexible, ranging from large-scale proteome microarrays to smaller customizable microarrays, making the technology amenable for detection of a broad spectrum of biochemical properties of proteins. In this article, we will focus on the numerous studies that have utilized protein microarrays to reconstruct biological networks including protein-DNA interactions, posttranslational protein modifications (PTMs), lectin-glycan recognition, pathogen-host interactions and hierarchical signaling cascades. The diversity in applications allows for integration of interaction data from numerous molecular classes and cellular states, providing insight into the structure of complex biological systems. We will also discuss emerging applications and future directions of protein microarray technology in the global frontier.  相似文献   

2.
3.
Global approaches to protein-protein interactions   总被引:11,自引:0,他引:11  
The availability of complete, annotated genome sequences for a variety of eukaryotic organisms has paved the way for a paradigm shift in biomedical research from the 'one gene-one hypothesis' approach to more global, systematic strategies that analyse genes or proteins on a genome- and proteome-wide scale. One daunting task in the post-genome era is to determine how the complement of expressed cellular proteins - the proteome - is organised into functional, higher-order networks, by mapping all constitutive and dynamic protein-protein interactions. Traditionally, reductionist approaches have typically focused on a few, selected gene products and their interactions in a particular physiological context. In contrast, more holistic strategies aim at understanding complex biological systems, for example global protein-protein interaction networks on a cellular or organismal level. Several large-scale proteomics technologies have been developed to generate comprehensive, cellular protein-protein interaction maps.  相似文献   

4.
Protein complexes may well be the most relevant molecular units of cellular function. The activities of protein complexes have to be regulated both in time and space to integrate within the overall cell programs. The cell can be compared to a factory orchestrating individual assembly lines into integrated networks fulfilling particular and superimposed tasks. Recent proteome-wide studies provide insight into the properties of cellular protein complexes, their modular nature, their interaction with other complexes and the resulting preliminary organization chart of the proteome.  相似文献   

5.
Glycosaminoglycans are complex polysaccharides exhibiting a large structural and conformational diversity. These key biological players organize the extracellular matrix, contribute to cell–matrix interactions, and regulate cell signaling. Natural and synthetic libraries of glycosaminoglycans have been spotted on microarrays to find glycosaminoglycan partners and determine the size and the chemical groups promoting protein binding. Advances in glycosaminoglycan sequencing allow the characterization of glycosaminoglycan sequences interacting with proteins, and glycosaminoglycan-mediated pull-down proteomics can identify glycosaminoglycan-binding proteins at a proteome scale in various biological samples. The analysis of the glycosaminoglycan interaction networks generated using these data gives insights into the molecular and cellular mechanisms underlying glycosaminoglycan functions. These interactomes can also be used to design inhibitors targeting specific GAG interactions for therapeutic purpose.  相似文献   

6.
Mapping protein–protein interactions in genome-wide scales revealed thousands of novel binding partners in each of the explored model organisms. Organizing these hits in comprehensive ways is becoming increasingly important for systems biology approaches to understand complex cellular processes and diseases. However, proteome wide interaction techniques and their resulting global networks are not revealing the topologies of networks that are truly operating in the cell. In this short review I will discuss which prerequisites have to be fulfilled and which experimental methods might be practicable to translate primary protein interaction data into network presentations that help in understanding cellular processes.  相似文献   

7.
The systematic characterization of the whole interactomes of different model organisms has revealed that the eukaryotic proteome is highly interconnected. Therefore, biological research is progressively shifting away from classical approaches that focus only on a few proteins toward whole protein interaction networks to describe the relationship of proteins in biological processes. In this minireview, we survey the most common methods for the systematic identification of protein interactions and exemplify different strategies for the generation of protein interaction networks. In particular, we will focus on the recent development of protein interaction networks derived from quantitative proteomics data sets.  相似文献   

8.
Protein-protein interaction networks: from interactions to networks   总被引:1,自引:0,他引:1  
The goal of interaction proteomics that studies the protein-protein interactions of all expressed proteins is to understand biological processes that are strictly regulated by these interactions. The availability of entire genome sequences of many organisms and high-throughput analysis tools has led scientists to study the entire proteome (Pandey and Mann, 2000). There are various high-throughput methods for detecting protein interactions such as yeast two-hybrid approach and mass spectrometry to produce vast amounts of data that can be utilized to decipher protein functions in complicated biological networks. In this review, we discuss recent developments in analytical methods for large-scale protein interactions and the future direction of interaction proteomics.  相似文献   

9.
MOTIVATION: Data on protein-protein interactions (PPIs) are increasing exponentially. To date, large-scale protein interaction networks are available for human and most model species. The arising challenge is to organize these networks into models of cellular machinery. As in other biological domains, a comparative approach provides a powerful basis for addressing this challenge. RESULTS: We develop a probabilistic model for protein complexes that are conserved across two species. The model describes the evolution of conserved protein complexes from an ancestral species by protein interaction attachment and detachment and gene duplication events. We apply our model to search for conserved protein complexes within the PPI networks of yeast and fly, which are the largest networks in public databases. We detect 150 conserved complexes that match well-known complexes in yeast and are coherent in their functional annotations both in yeast and in fly. In comparison with two previous approaches, our model yields higher specificity and sensitivity levels in protein complex detection. AVAILABILITY: The program is available upon request.  相似文献   

10.
Here we introduce the ‘interaction generality’ measure, a new method for computationally assessing the reliability of protein–protein interactions obtained in biological experiments. This measure is basically the number of proteins involved in a given interaction and also adopts the idea that interactions observed in a complicated interaction network are likely to be true positives. Using a group of yeast protein–protein interactions identified in various biological experiments, we show that interactions with low generalities are more likely to be reproducible in other independent assays. We constructed more reliable networks by eliminating interactions whose generalities were above a particular threshold. The rate of interactions with common cellular roles increased from 63% in the unadjusted estimates to 79% in the refined networks. As a result, the rate of cross-talk between proteins with different cellular roles decreased, enabling very clear predictions of the functions of some unknown proteins. The results suggest that the interaction generality measure will make interaction data more useful in all organisms and may yield insights into the biological roles of the proteins studied.  相似文献   

11.
MOTIVATION: Many genomes have been completely sequenced. However, detecting and analyzing their protein-protein interactions by experimental methods such as co-immunoprecipitation, tandem affinity purification and Y2H is not as fast as genome sequencing. Therefore, a computational prediction method based on the known protein structural interactions will be useful to analyze large-scale protein-protein interaction rules within and among complete genomes. RESULTS: We confirmed that all the predicted protein family interactomes (the full set of protein family interactions within a proteome) of 146 species are scale-free networks, and they share a small core network comprising 36 protein families related to indispensable cellular functions. We found two fundamental differences among prokaryotic and eukaryotic interactomes: (1) eukarya had significantly more hub families than archaea and bacteria and (2) certain special hub families determined the topology of the eukaryotic interactomes. Our comparative analysis suggests that a very small number of expansive protein families led to the evolution of interactomes and seemed to have played a key role in species diversification. SUPPLEMENTARY INFORMATION: http://interactomics.org.  相似文献   

12.
13.

Background

Proteins dynamically interact with each other to perform their biological functions. The dynamic operations of protein interaction networks (PPI) are also reflected in the dynamic formations of protein complexes. Existing protein complex detection algorithms usually overlook the inherent temporal nature of protein interactions within PPI networks. Systematically analyzing the temporal protein complexes can not only improve the accuracy of protein complex detection, but also strengthen our biological knowledge on the dynamic protein assembly processes for cellular organization.

Results

In this study, we propose a novel computational method to predict temporal protein complexes. Particularly, we first construct a series of dynamic PPI networks by joint analysis of time-course gene expression data and protein interaction data. Then a Time Smooth Overlapping Complex Detection model (TS-OCD) has been proposed to detect temporal protein complexes from these dynamic PPI networks. TS-OCD can naturally capture the smoothness of networks between consecutive time points and detect overlapping protein complexes at each time point. Finally, a nonnegative matrix factorization based algorithm is introduced to merge those very similar temporal complexes across different time points.

Conclusions

Extensive experimental results demonstrate the proposed method is very effective in detecting temporal protein complexes than the state-of-the-art complex detection techniques.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-335) contains supplementary material, which is available to authorized users.  相似文献   

14.
Proteins mediate their biological function through interactions with other proteins. Therefore, the systematic identification and characterization of protein-protein interactions have become a powerful proteomic strategy to understand protein function and comprehensive cellular regulatory networks. For the screening of valosin-containing protein, carboxyl terminus of Hsp70-interacting protein (CHIP), and amphiphysin II interaction partners, we utilized a membrane-based array technology that allows the identification of human protein-protein interactions with crude bacterial cell extracts. Many novel interaction pairs such as valosin-containing protein/autocrine motility factor receptor, CHIP/caytaxin, or amphiphysin II/DLP4 were identified and subsequently confirmed by pull-down, two-hybrid and co-immunoprecipitation experiments. In addition, assays were performed to validate the interactions functionally. CHIP e.g. was found to efficiently polyubiquitinate caytaxin in vitro, suggesting that it might influence caytaxin degradation in vivo. Using peptide arrays, we also identified the binding motifs in the proteins DLP4, XRCC4, and fructose-1,6-bisphosphatase, which are crucial for the association with the Src homology 3 domain of amphiphysin II. Together these studies indicate that our human proteome array technology permits the identification of protein-protein interactions that are functionally involved in neurodegenerative disease processes, the degradation of protein substrates, and the transport of membrane vesicles.  相似文献   

15.
Using indirect protein-protein interactions for protein complex prediction   总被引:1,自引:0,他引:1  
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.  相似文献   

16.
Proteins function through their interactions, and the availability of protein interaction networks could help in understanding cellular processes. However, the known structural data are limited and the classical network node-and-edge representation, where proteins are nodes and interactions are edges, shows only which proteins interact; not how they interact. Structural networks provide this information. Protein-protein interface structures can also indicate which binding partners can interact simultaneously and which are competitive, and can help forecasting potentially harmful drug side effects. Here, we use a powerful protein-protein interactions prediction tool which is able to carry out accurate predictions on the proteome scale to construct the structural network of the extracellular signal-regulated kinases (ERK) in the mitogen-activated protein kinase (MAPK) signaling pathway. This knowledge-based method, PRISM, is motif-based, and is combined with flexible refinement and energy scoring. PRISM predicts protein interactions based on structural and evolutionary similarity to known protein interfaces.  相似文献   

17.
Covalent post-translational modification of proteins is the primary modulator of protein function in the cell. It greatly expands the functional potential of the proteome compared to the genome. In the past few years shotgun proteomics-based research, where the proteome is digested into peptides prior to mass spectrometric analysis has been prolific in this area. It has determined the kinetics of tens of thousands of sites of covalent modification on an equally large number of proteins under various biological conditions and uncovered a transiently active regulatory network that extends into diverse branches of cellular physiology. In this review, we discuss this work in light of the concept of protein speciation, which emphasizes the entire post-translationally modified molecule and its interactions and not just the modification site as the functional entity. Sometimes, particularly when considering complex multisite modification, all of the modified molecular species involved in the investigated condition, the protein species must be completely resolved for full understanding. We present a mathematical technique that delivers a good approximation for shotgun proteomics data.  相似文献   

18.
MOTIVATION: The structural interaction of proteins and their domains in networks is one of the most basic molecular mechanisms for biological cells. Topological analysis of such networks can provide an understanding of and solutions for predicting properties of proteins and their evolution in terms of domains. A single paradigm for the analysis of interactions at different layers, such as domain and protein layers, is needed. RESULTS: Applying a colored vertex graph model, we integrated two basic interaction layers under a unified model: (1) structural domains and (2) their protein/complex networks. We identified four basic and distinct elements in the model that explains protein interactions at the domain level. We searched for motifs in the networks to detect their topological characteristics using a pruning strategy and a hash table for rapid detection. We obtained the following results: first, compared with a random distribution, a substantial part of the protein interactions could be explained by domain-level structural interaction information. Second, there were distinct kinds of protein interaction patterns classified by specific and distinguishable numbers of domains. The intermolecular domain interaction was the most dominant protein interaction pattern. Third, despite the coverage of the protein interaction information differing among species, the similarity of their networks indicated shared architectures of protein interaction network in living organisms. Remarkably, there were only a few basic architectures in the model (>10 for a 4-node network topology), and we propose that most biological combinations of domains into proteins and complexes can be explained by a small number of key topological motifs. CONTACT: doheon@kaist.ac.kr.  相似文献   

19.
Reimand J  Hui S  Jain S  Law B  Bader GD 《FEBS letters》2012,586(17):2751-2763
Protein-protein interactions (PPIs), involved in many biological processes such as cellular signaling, are ultimately encoded in the genome. Solving the problem of predicting protein interactions from the genome sequence will lead to increased understanding of complex networks, evolution and human disease. We can learn the relationship between genomes and networks by focusing on an easily approachable subset of high-resolution protein interactions that are mediated by peptide recognition modules (PRMs) such as PDZ, WW and SH3 domains. This review focuses on computational prediction and analysis of PRM-mediated networks and discusses sequence- and structure-based interaction predictors, techniques and datasets for identifying physiologically relevant PPIs, and interpreting high-resolution interaction networks in the context of evolution and human disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号