首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria are involved in a variety of cellular metabolic processes, and their functions are regulated by extrinsic and intrinsic stimuli including viruses. Recent studies have shown that mitochondria play a central role in the primary host defense mechanisms against viral infections, and a number of novel viral and mitochondrial proteins are involved in these processes. Some viral proteins localize in mitochondria and interact with mitochondrial proteins to regulate cellular responses. This review summarizes recent findings on the functions and roles of these molecules as well as mitochondrial responses to viral infections.  相似文献   

2.
Mitochondria: more than just a powerhouse   总被引:26,自引:0,他引:26  
Pioneering biochemical studies have long forged the concept that the mitochondria are the 'energy powerhouse of the cell'. These studies, combined with the unique evolutionary origin of the mitochondria, led the way to decades of research focusing on the organelle as an essential, yet independent, functional component of the cell. Recently, however, our conceptual view of this isolated organelle has been profoundly altered with the discovery that mitochondria function within an integrated reticulum that is continually remodeled by both fusion and fission events. The identification of a number of proteins that regulate these activities is beginning to provide mechanistic details of mitochondrial membrane remodeling. However, the broader question remains regarding the underlying purpose of mitochondrial dynamics and the translation of these morphological transitions into altered functional output. One hypothesis has been that mitochondrial respiration and metabolism may be spatially and temporally regulated by the architecture and positioning of the organelle. Recent evidence supports and expands this idea by demonstrating that mitochondria are an integral part of multiple cell signaling cascades. Interestingly, proteins such as GTPases, kinases and phosphatases are involved in bi-directional communication between the mitochondrial reticulum and the rest of the cell. These proteins link mitochondrial function and dynamics to the regulation of metabolism, cell-cycle control, development, antiviral responses and cell death. In this review we will highlight the emerging evidence that provides molecular definition to mitochondria as a central platform in the execution of diverse cellular events.  相似文献   

3.
Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These “non-canonical” roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   

4.
Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments--outer membrane, intermembrane space (IMS), inner membrane and matrix--requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria.  相似文献   

5.
We have used gel electrophoretic techniques including isoelectric focusing, blue native, acid-urea, 16-benzyldimethyl-n-hexadecylammonium chloride or SDS first dimensions and SDS Laemmli or tricine second dimensions to separate the proteins from highly-purified Neurospora mitochondria and sub-mitochondrial fractions (membrane, soluble, protein complexes and ribonucleoproteins). The products of 260 genes, many of them in multiple processed or modified forms, were identified by MALDI-TOF mass spectrometry. This work confirms the existence, expression, and mitochondrial localization of the products of 55 Neurospora genes previously annotated only as predicted or hypothetical, and of 101 genes not identified in previous mass spectrometry studies. Combined with previous mass spectrometry studies, and re-evaluation of genome annotations, we have compiled a curated list of 358 proteins identified in proteomic studies that are likely to be bona fide mitochondrial proteins plus 80 other identified proteins that may be mitochondrial. Literature data mining and computational predictions suggest that Neurospora mitochondria also contain another 299 proteins not yet identified in proteomics projects. Taken together, these data suggest that the products of at least 738 genes comprise the Neurospora mitochondrial proteome.  相似文献   

6.
The goal of this study was to explore the occurrence of nitrated proteins in mitochondria given that these organelles are endowed with a mitochondrial nitric oxide (NO.-) synthase and considering the important role that mitochondria have in energy metabolism. Our hypothesis is that nitration of proteins constitutes a posttranslational modification by which NO.- exhibits long-term effects above and beyond those bioregulatory ones mediated through the interaction with cytochrome c oxidase. Our studies are aimed at understanding the mechanisms underlying the nitration of proteins in mitochondria and the biological significance of such a process in the cellular milieu. On promoting a sustained NO.- production by mitochondria, we investigated various aspects of protein nitration. Among them, the localization of nitrated proteins in mitochondrial subfractions, the identification of nitrated proteins through proteomic approaches, the characterization of affected pathways, and depiction of a target sequence. The biological relevance was analyzed by considering the turnover of native and nitrated proteins. In this regard, mitochondrial dysfunction, ensuing nitrative stress, may be envisioned as the result of accumulation of nitrated proteins, resulting from an overproduction of endogenous NO.- (this study), a failure in the proteolytic system to catabolize modified proteins, or a combination of both. Finally, this study allows one to gain understanding on the mechanism and nitrating species underlying mitochondrial protein nitration.  相似文献   

7.
Rapaport D 《EMBO reports》2003,4(10):948-952
The mitochondrial outer membrane contains a diverse set of proteins that includes enzymes, components of the preprotein translocation machinery, pore-forming proteins, regulators of programmed cell death, and those that control the morphology of the organelle. All these proteins, like the vast majority of mitochondrial proteins, are encoded in the nucleus, so they are synthesized in the cytosol and contain signals that are essential for their subsequent import into mitochondria. This review summarizes our current knowledge of the signals that target mitochondrial outer-membrane proteins to their correct intracellular location. In addition, the mechanisms by which these signals are decoded by the mitochondria are discussed.  相似文献   

8.
Importance of mitochondrial dynamics during meiosis and sporulation   总被引:4,自引:0,他引:4       下载免费PDF全文
Opposing fission and fusion events maintain the yeast mitochondrial network. Six proteins regulate these membrane dynamics during mitotic growth-Dnm1p, Mdv1p, and Fis1p mediate fission; Fzo1p, Mgm1p, and Ugo1p mediate fusion. Previous studies established that mitochondria fragment and rejoin at distinct stages during meiosis and sporulation, suggesting that mitochondrial fission and fusion are required during this process. Here we report that strains defective for mitochondrial fission alone, or both fission and fusion, complete meiosis and sporulation. However, visualization of mitochondria in sporulating cultures reveals morphological defects associated with the loss of fusion and/or fission proteins. Specifically, mitochondria collapse to one side of the cell and fail to fragment during presporulation. In addition, mitochondria are not inherited equally by newly formed spores, and mitochondrial DNA nucleoid segregation defects give rise to spores lacking nucleoids. This nucleoid inheritance defect is correlated with an increase in petite spore colonies. Unexpectedly, mitochondria fragment in mature tetrads lacking fission proteins. The latter finding suggests either that novel fission machinery operates during sporulation or that mechanical forces generate the mitochondrial fragments observed in mature spores. These results provide evidence of fitness defects caused by fission mutations and reveal new phenotypes associated with fission and fusion mutations.  相似文献   

9.
Oxidative stress has been implicated in dysfunctional mitochondria in diabetes. Tyrosine nitration of mitochondrial proteins was observed under conditions of oxidative stress. We hypothesize that nitration of mitochondrial proteins is a common mechanism by which oxidative stress causes dysfunctional mitochondria. The putative mechanism of nitration in a diabetic model of oxidative stress and functional changes of nitrated proteins were studied in this work. As a source of mitochondria, alloxan-susceptible and alloxan-resistant mice were used. These inbred strains are distinguished by the differential ability to detoxify free radicals. A proteomic approach revealed significant similarity between patterns of tyrosine-nitrated proteins generated in the heart mitochondria under different in vitro and in vivo conditions of oxidative stress. This observation points to a common nitrating species, which may derive from different nitrating pathways in vivo and may be responsible for the majority of nitrotyrosine formed. Functional studies show that protein nitration has an adverse effect on protein function and that protection against nitration protects functional properties of proteins. Because proteins that undergo nitration are involved in major mitochondrial functions, such as energy production, antioxidant defense, and apoptosis, we concluded that tyrosine nitration of mitochondrial proteins may lead to dysfunctional mitochondria in diabetes.  相似文献   

10.
Plant mitochondria play central roles in cellular energy production, metabolism and stress responses. Recent phosphoproteomic studies in mammalian and yeast mitochondria have presented evidence indicating that protein phosphorylation is a likely regulatory mechanism across a broad range of important mitochondrial processes. This study investigated protein phosphorylation in purified mitochondria from cell suspensions of the model plant Arabidopsis thaliana using affinity enrichment and proteomic tools. Eighteen putative phosphoproteins consisting of mitochondrial metabolic enzymes, HSPs, a protease and several proteins of unknown function were detected on 2‐DE separations of Arabidopsis mitochondrial proteins and affinity‐enriched phosphoproteins using the Pro‐Q Diamond phospho‐specific in‐gel dye. Comparisons with mitochondrial phosphoproteomes of yeast and mouse indicate that these three species share few validated phosphoproteins. Phosphorylation sites for seven of the eighteen mitochondrial proteins were characterized by titanium dioxide enrichment and MS/MS. In the process, 71 phosphopeptides from Arabidopsis proteins which are not present in mitochondria but found as contaminants in various types of mitochondrial preparations were also identified, indicating the low level of phosphorylation of mitochondrial components compared with other cellular components in Arabidopsis. Information gained from this study provides a better understanding of protein phosphorylation at both the subcellular and the cellular level in Arabidopsis.  相似文献   

11.
Mitochondrial dysfunction is an important intracellular lesion associated with a wide variety of diseases including neurodegenerative disorders. In addition to aging, oxidative stress and mitochondrial DNA mutations, recent studies have implicated a role for the mitochondrial accumulation of proteins such as plasma membrane associated amyloid precursor protein (APP) and cytosolic alpha synuclein in the pathogenesis of mitochondrial dysfunction in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. Both of these proteins contain cryptic mitochondrial targeting signals, which drive their transport across mitochondria. In general, mitochondrial entry of nuclear coded proteins is assisted by import receptors situated in both outer and inner mitochondrial membranes. A growing number of evidence suggests that APP and alpha synclein interact with import receptors to gain entry into mitochondrial compartment. Additionally, carboxy terminal cleaved product of APP, ~ 4 kDa Abeta, is also transported into mitochondria with the help of mitochondrial outer membrane import receptors. This review focuses on the mitochondrial targeting and accumulation of these two structurally different proteins and the mode of mechanism by which they affect the physiological functions of mitochondria.  相似文献   

12.
Mitochondrial proton leak: a role for uncoupling proteins 2 and 3?   总被引:8,自引:0,他引:8  
In mitochondria ATP synthesis is not perfectly coupled to oxygen consumption due to proton leak across the mitochondrial inner membrane. Quantitative studies have shown that proton leak contributes to approximately 25% of the resting oxygen consumption of mammals. Proton leak plays a role in accounting for differences in basal metabolic rate. Thyroid studies, body mass studies, phylogenic studies and obesity studies have all shown that increased mass-specific metabolic rate is linked to increased mitochondrial proton leak. The mechanism of the proton leak is unclear. Evidence suggests that proton leak occurs by a non-specific diffusion process across the mitochondrial inner membrane. However, the high degree of sequence homology of the recently cloned uncoupling proteins UCP 2 and UCP 3 to brown adipose tissue UCP 1, and their extensive tissue distribution, suggest that these novel uncoupling proteins play a role in proton leak. Early indications from reconstitution experiments and several in vitro expression studies suggest that the novel uncoupling proteins uncouple mitochondria. Furthermore, mice overexpressing UCP 3 certainly show a phenotype consistent with increased metabolism. The evidence for a role for these novel UCPs in mitochondrial proton leak is reviewed.  相似文献   

13.
The diverse functions of mitochondria depend on hundreds of different proteins. The vast majority of these proteins is encoded in the nucleus, translated in the cytosol, and must be imported into the organelle. Import was shown to occur after complete synthesis of the protein, with the assistance of cytosolic chaperones that maintain it in an unfolded state and target it to the mitochondrial translocase of the outer membrane (TOM complex). Recent studies, however, identified many mRNAs encoding mitochondrial proteins near the outer membrane of mitochondria. Translation studies suggest that many of these mRNAs are translated locally, presumably allowing cotranslational import into mitochondria. Herein we review these data and discuss its relevance for local protein synthesis. We also suggest alternative roles for mRNA localization to mitochondria. Finally, we suggest future research directions, including revealing the significance of localization to mitochondria physiology and the molecular players that regulate it.  相似文献   

14.
Parkinson's disease (PD), the most prevalent neurodegenerative movement disorder, is characterized by an age-dependent selective loss of dopaminergic (DA) neurons. Although most PD cases are sporadic, more than 20 responsible genes in familial cases were identified recently. Genetic studies using Drosophila models demonstrate that PINK1, a mitochondrial kinase encoded by a PD-linked gene PINK1, is critical for maintaining mitochondrial function and integrity. This suggests that mitochondrial dysfunction is the main cause of PD pathogenesis. Further genetic and cell biological studies revealed that PINK1 recruits Parkin, an E3 ubiquitin ligase encoded by another PD-linked gene parkin, to mitochondria and regulates the mitochondrial remodeling process via the Parkin-mediated ubiquitination of various mitochondrial proteins. PINK1 also directly phosphorylates the mitochondrial proteins Miro and TRAP1, subsequently inhibiting mitochondrial transport and mitochondrial oxidative damage, respectively. Moreover, recent Drosophila genetic analyses demonstrate that the neuroprotective molecules Sir2 and FOXO specifically complement mitochondrial dysfunction and DA neuron loss in PINK1 null mutants, suggesting that Sir2 and FOXO protect mitochondria and DA neurons downstream of PINK1. Collectively, these recent results suggest that PINK1 plays multiple roles in mitochondrial quality control by regulating its mitochondrial, cytosolic, and nuclear targets.  相似文献   

15.
The execution phase of apoptosis is comprised of those processes that commit cells to apoptotic death. Many independent studies have implicated mitochondria as playing a critical role in apoptotic execution. The activation of caspase-3 and subsequent late stage degradative events are probably triggered by the release of proteins (such as cytochrome c) from the intermembrane space of mitochondria. The mechanisms responsible for this release are controversial but may include mitochondrial permeability transition and bcl-2-regulated swelling of the mitochondrial matrix. Two theoretical models of execution are discussed. It is important to note that some critical features of these models are largely based on data acquired from cell-free studies. Further studies with intact cells are urgently needed to test the physiological validity of these models.  相似文献   

16.
17.
Most chloroplast and mitochondrial proteins are synthesized with N-terminal presequences that direct their import into the appropriate organelle. In this report we have analyzed the specificity of standard in vitro assays for import into isolated pea chloroplasts and mitochondria. We find that chloroplast protein import is highly specific because mitochondrial proteins are not imported to any detectable levels. Surprisingly, however, pea mitochondria import a range of chloroplast protein precursors with the same efficiency as chloroplasts, including those of plastocyanin, the 33-kDa photosystem II protein, Hcf136, and coproporphyrinogen III oxidase. These import reactions are dependent on the Deltaphi across the inner mitochondrial membrane, and furthermore, marker enzyme assays and Western blotting studies exclude any import by contaminating chloroplasts in the preparation. The pea mitochondria specifically recognize information in the chloroplast-targeting presequences, because they also import a fusion comprising the presequence of coproporphyrinogen III oxidase linked to green fluorescent protein. However, the same construct is targeted exclusively into chloroplasts in vivo indicating that the in vitro mitochondrial import reactions are unphysiological, possibly because essential specificity factors are absent in these assays. Finally, we show that disruption of potential amphipathic helices in one presequence does not block import into pea mitochondria, indicating that other features are recognized.  相似文献   

18.
《The Journal of cell biology》1989,109(6):2603-2616
To identify the membrane regions through which yeast mitochondria import proteins from the cytoplasm, we have tagged these regions with two different partly translocated precursor proteins. One of these was bound to the mitochondrial surface of ATP-depleted mitochondria and could subsequently be chased into mitochondria upon addition of ATP. The other intermediate was irreversibly stuck across both mitochondrial membranes at protein import sites. Upon subfraction of the mitochondria, both intermediates cofractionated with membrane vesicles whose buoyant density was between that of inner and outer membranes. When these vesicles were prepared from mitochondria containing the chaseable intermediate, they internalized it upon addition of ATP. A non-hydrolyzable ATP analogue was inactive. This vesicle fraction contained closed, right-side-out inner membrane vesicles attached to leaky outer membrane vesicles. The vesicles contained the mitochondrial binding sites for cytoplasmic ribosomes and contained several mitochondrial proteins that were enriched relative to markers of inner or outer membranes. By immunoelectron microscopy, two of these proteins were concentrated at sites where mitochondrial inner and outer membranes are closely apposed. We conclude that these vesicles contain contact sites between the two mitochondrial membranes, that these sites are the entry point for proteins into mitochondria, and that the isolated vesicles are still translocation competent.  相似文献   

19.
Signal-anchored proteins are a class of mitochondrial outer membrane proteins that expose a hydrophilic domain to the cytosol and are anchored to the membrane by a single transmembrane domain in the N-terminal region. Like the vast majority of mitochondrial proteins, signal-anchored proteins are synthesized on cytosolic ribosomes and are subsequently imported into the organelle. We have studied the mechanisms by which precursors of these proteins are recognized by the mitochondria and are inserted into the outer membrane. The import of signal-anchored proteins was found to be independent of the known import receptors, Tom20 and Tom70, but to require the major Tom component, Tom40. In contrast to precursors destined to internal compartments of mitochondria and those of outer membrane beta-barrel proteins, precursors of signal-anchored proteins appear not to be inserted via the general import pore. Taken together, we propose a novel pathway for insertion of these proteins into the outer membrane of mitochondria.  相似文献   

20.
The phosphorylation of mitochondrial proteins is pivotal to the regulation of respiratory activity in the cell and to signaling pathways leading to apoptosis, as well as for other vital mitochondrial processes. A number of protein kinases have been identified in mitochondria but the physiological substrates for many of these remain unknown or poorly understood. By necessity, most studies of mitochondrial phosphoproteins to date have been conducted using in vitro incorporation of 32P. However, proteins that are highly phosphorylated from in situ reactions are not necessarily detected by this approach. In this study, a new small molecule fluorophore has been employed to characterize steady-state levels of mitochondrial phosphoproteins. The dye is capable of sensitive detection of phosphorylated amino acid residues in proteins separated by gel electrophoresis. When the fluorescent dye is combined with a total protein stain in a sequential gel staining procedure, the phosphorylated proteins can be visualized in the same gel as the total proteins. To optimize resolution of the proteins in mitochondria, a previously described sucrose gradient fractionation method was employed prior to gel electrophoresis. Phosphorylated proteins, as defined by the fluorescence of the phosphosensor, were excised from the gels and identified by peptide mass fingerprinting. One novel and prominent phosphoprotein identified in this manner was determined to be the 42-kDa subunit of mitochondrial complex I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号