首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
刘洪庆  车永梅  赵方贵  杨凤玲  刘新 《生态学报》2012,32(19):6085-6091
以烟草((Nicotiana tabacum,品种CF90NF)为寄主,苗期接种丛枝菌根(AM)真菌摩西球囊霉(Glomus mosseae,G.m),测定G.m与烟草共生过程中烟草根部H2O2含量以及多胺氧化酶(PAO)和过氧化物酶(POD)活性;研究外源H2O2对G.m侵染烟草的影响以及H2O2清除剂和合成抑制剂对烟草侧根H2O2含量及烟草侧根和菌丝中H2O2荧光强度的影响,以探究H2O2在AM真菌侵染烟草过程中的作用。结果表明,接种G.m 20d后烟草侧根中出现H2O2含量的猝发,一定浓度的外源H2O2促进G.m对烟草的侵染,而H2O2清除剂抗坏血酸(AsA)显著削弱烟草侧根和菌丝中的H2O2荧光强度,降低G.m对烟草的侵染率,表明H2O2参与G.m与烟草共生过程;在G.m与烟草共生过程中,PAO和POD活性显著升高,PAO抑制剂二氨基十二烷(DADD)和POD抑制剂水杨羟肟酸(SHAM)显著降低烟草侧根中H2O2荧光强度,对菌丝中H2O2荧光强度无显著影响,表明烟草根部和G.m均可产生H2O2,PAO和POD参与烟草侧根中H2O2的合成,菌丝中可能存在其他来源的H2O2。  相似文献   

2.
The present work underlined the negative effects of increasing CaCO3 concentrations (5, 10 and 20 mM) both on the chicory root growth and the arbuscular mycorrhizal fungus (AMF) Glomus irregulare development in monoxenic system. CaCO3 was found to reduce drastically the main stages of G. irregulare life cycle (spore germination, germinative hyphae elongation, root colonization, extraradical hyphae development and sporulation) but not to inhibit it completely. The root colonization drop was confirmed by the decrease in the arbuscular mycorrhizal fungal marker C16:1ω5 amounts in the mycorrhizal chicory roots grown in the presence of CaCO3. Oxidative damage evaluated by lipid peroxidation increase measured by (i) malondialdehyde (MDA) production and (ii) the antioxidant enzyme peroxidase (POD) activities, was highlighted in chicory roots grown in the presence of CaCO3. However, MDA formation was significantly higher in non-mycorrhizal roots as compared to mycorrhizal ones. This study pointed out the ability of arbuscular mycorrhizal symbiosis to enhance plant tolerance to high levels of CaCO3 by preventing lipid peroxidation and so less cell membrane damage.  相似文献   

3.
以水培7d苗龄的山黧豆幼苗为材料,向水培溶液中施加不同浓度H2O2处理山黧豆幼苗24h,分析山黧豆根系受氧化胁迫的程度与抗氧化系统的应答特征,以揭示山黧豆对氧化胁迫的耐受机制。结果显示:(1)随外源H2O2处理浓度的不断增加,山黧豆幼苗侧根的数目无显著变化,而其根的鲜重则显著降低。(2)同时,根系组织的内源H2O2染色范围和程度显著增高,但根尖区域始终保持较低水平的H2O2;相反,O-·2染色范围和程度明显减少,根尖区域却始终保持较高水平的O-·2。(3)同期根系抗坏血酸(ASC)含量及过氧化氢酶(CAT)、过氧化物酶(POD)与抗坏血酸过氧化物酶(APX)的活性均表现出了先升高后降低的趋势,而超氧化物歧化酶(SOD)一直表现为持续上升的趋势。研究表明,在外源H2O2胁迫条件下,山黧豆根系O-·2的积累可能与其生长和活力呈正相关,而根系H2O2的积累则与其受氧化胁迫程度呈正相关;低浓度的H2O2处理可以提高山黧豆抗氧化系统对体内活性氧的清除能力。  相似文献   

4.
Evidence for the participation of reactive oxygen species (ROS) and antioxidant systems in ectomycorrhizal (ECM) establishment is lacking. In this paper, we evaluated ROS production and the activities of superoxide dismutase (SOD) and catalase (CAT) during the early contact of the ECM fungus Pisolithus tinctorius with the roots of Castanea sativa (chestnut tree). Roots were placed in contact with P. tinctorius mycelia, and ROS production was evaluated by determining the levels of H2O2 and O2 ·− during the early stages of fungal contact. Three peaks of H2O2 production were detected, the first two coinciding with O2 ·− bursts. The first H2O2 production peak coincided with an increase in SOD activity, whereas CAT activity seemed to be implicated in H2O2 scavenging. P. tinctorius growth was evaluated in the presence of P. tinctorius-elicited C. sativa crude extracts prepared during the early stages of fungal contact. Differential hyphal growth that matched the H2O2 production profile with a delay was detected. The result suggests that during the early stages of ECM establishment, H2O2 results from an inhibition of ROS-scavenging enzymes and plays a role in signalling during symbiotic establishment.  相似文献   

5.
Summary We have investigated whether direct physical interactions occur between arbuscular mycorrhizal (AM) fungi and plant growth promoting rhizobacteria (PGPRs), some of which are used as biocontrol agents. Attachment of rhizobia and pseudomonads to the spores and fungal mycelium ofGigaspora margarita has been assessed in vitro and visualized by a combination of electron and confocal microscopy. The results showed that both rhizobia and pseudomonads adhere to spores and hyphae of AM fungi germinated under sterile conditions, although the degree of attachment depended upon the strain.Pseudomonas fluorescens strain WCS 365 andRhizobium leguminosarum strains B556 and 3841 were the most effective colonizers. Extracellular material of bacterial origin containing cellulose produced around the attached bacteria may mediate fungal/bacterial interactions. These results suggest that antagonistic and synergistic interactions between AM fungi and rhizosphere bacteria may be mediated by soluble factors or physical contact. They also support the view that AM fungi are a vehicle for the colonization of plant roots by soil rhizobacteria.Abbreviations AM arbuscular mycorrhiza - PGPR plant growth promoting rhizobacteria - CBH cellobiohydrolase - DAPG 2,4-(diacetyl-phloroglucinol - TY triptone-yeast - LB Lauria-Bertani Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

6.
Summary The cell cycle of an arbuscular mycorrhizal fungus,Glomus versiforme, was determined by flow cytometric analysis of nuclei isolated from spores and mycorrhizal roots of leek, and by immunogold staining after bromodeoxyuridine (BrdU) uptake by DNA. The aims of our work were to establish: (i) whether there are changes in ploidy during fungal growth and morphogenesis, (ii) when and where the cell cycle is activated. Our results demonstrate that nuclei isolated from quiescent spores ofG. versiforme are arrested in the GO/G1 phase (99.2%), whereas fungal nuclei from mycorrhizal roots are in the synthetic (S) (10.1%) and G2/M phase (3.9%). Nuclei undergoing DNA synthesis were detected in situ after BrdU uptake. Labelled nuclei were observed in intercellular hyphae and in large arbuscular trunks. This paper demonstrates that colonization of an arbuscular mycorrhizal fungus is linked to activation of its cell cycle.Abbreviations AM fungi arbuscular mycorrhizal fungi - BrdU 5-bromo-2-deoxyuridine - PI propidium iodide - DAPI 4,6-diamidino-2-phenylindole  相似文献   

7.
Phytostabilization strategies may be suitable to reduce the dispersion of uranium (U) and the overall environmental risks of U-contaminated soils. The role of Glomus intraradices, an arbuscular mycorrhizal (AM) fungus, in such phytostabilization of U was investigated with a compartmented plant cultivation system facilitating the specific measurement of U uptake by roots, AM roots and extraradical hyphae of AM fungi and the measurement of U partitioning between root and shoot. A soil-filled plastic pot constituted the main root compartment (CA) which contained a plastic vial filled with U-contaminated soil amended with 0, 50 or 200 mg KH2PO4−P kg–1soil (CB). The vial was sealed by coarse or fine nylon mesh, permitting the penetration of both roots and hyphae or of just hyphae. Medicago truncatula plants grown in CA were inoculated with G. intraradices or remained uninoculated. Dry weight of shoots and roots in CA was significantly increased by G. intraradices, but was unaffected by mesh size or by P application in CB. The P amendments decreased root colonization in CB, and increased P content and dry weight of those roots. Glomus intraradices increased root U concentration and content in CA, but decreased shoot U concentrations. Root U concentrations and contents were significantly higher when only hyphae could access U inside CB than when roots could also directly access this U pool. The proportion of plant U content partitioned to shoots was decreased by root exclusion from CB and by mycorrhizas (M) in the order: no M, roots in CB > no M, no roots in CB > M, roots in CB > M, no roots in CB. Such mycorrhiza-induced retention of U in plant roots may contribute to the phytostabilization of U contaminated environments.  相似文献   

8.
Chromium (Cr) is a heavy metal risk to human health, and a contaminant found in agricultural soils and industrial sites. Phytoremediation, which relies on phytoextraction of Cr with biological organisms, is an important alternative to costly physical and chemical methods of treating contaminated sites. The ability of the arbuscular mycorrhizal fungus (AM),Glomus intraradices, to enhance Cr uptake and plant tolerance was tested on the growth and gas exchange of sunflower (Helianthus annuus L.). Mycorrhizal-colonized (AM) and non-inoculated (Non-AM) sunflower plants were subjected to two Cr species [trivalent cation (Cr3+) Cr(III) , and divalent dichromate anion (Cr2O7) Cr(VI) ]. Both Cr species depressed plant growth, decreased net photosynthesis (A) and increased the vapor pressure difference; however, Cr(VI) was more toxic. Chromium accumulation was greatest in roots, intermediate in stems and leaves, and lowest in flowers. Greater Cr accumulation occurred with Cr(VI) than Cr(III). AM enhanced the ability of sunflower plants to tolerate and hyperaccumulate Cr. At higher Cr levels greater mycorrhizal dependency occurred, as indicated by proportionally greater growth, higherA and reduced visual symptoms of stress, compared to Non-AM plants. AM plants had greater Cr-accumulating ability than Non-AM plants at the highest concentrations of Cr(III) and Cr(VI), as indicated by the greater Cr phytoextraction coefficient. Mycorrhizal colonization (arbuscule, vesicle, and hyphae formation) was more adversely affected by Cr(VI) than Cr(III), however high levels of colonization still occurred at even the most toxic levels. Arbuscules, which play an important role in mineral ion exchange in root cortical cells, had the greatest sensitivity to Cr toxicity. Higher levels of both Cr species reduced leaf tissue phosphorus (P). While tissue P was higher in AM plants at the highest Cr(III) level, tissue P did not account for mycorrhizal benefits observed with Cr(VI) plants.  相似文献   

9.
Two experiments with soil cores were carried out to investigate the effects of arbuscular mycorrhizal (AM) fungal colonization on mobility of phosphorus (P) during leaching of repacked columns of a soil with a loamy sand texture. Trifolium subterraneum plants inoculated with an AM fungus or not inoculated were grown in cores with low or high P concentrations for 8 or 10 weeks in the glasshouse. Cores were then irrigated with 2500 mL water and the leachate collected. Plant growth and the amounts of P removed by plants, remaining in soil as available P and removed dissolved in leachate were measured. Mycorrhizal fungal colonization and development of external hyphae were also determined. Inoculation and/or P application significantly increased plant growth and plant P removal and decreased P leaching. In low P soils AM fungal colonization significantly increased plant P uptake and decreased soil available P and total dissolved P in leachates. Lower P leaching from cores with AM plants under low P conditions was related to enhancement of plant growth and to scavenging and removal of P from the soil by roots and/or external hyphae. When P was applied AM effects were not observed and available P remaining in the soil after leaching was much higher, regardless of AM fungal colonization.  相似文献   

10.
The diaminobenzidine (DAB) staining technique was used to examine the accumulation of H2O2 in parts of roots of Medicago truncatula Gaertn. colonized by the arbuscular mycorrhiza (AM)-forming fungus Glomus intraradices Schenk and Smith. At the cellular level, the combination of bright-field and fluorescence microscopy revealed that a brownish stain, indicative of H2O2 accumulation was present within cortical root cells in the space occupied by arbuscules. Accumulation of H2O2 was especially pronounced in cells containing arbuscules that were clumped and less branched. Moreover, H2O2 accumulated around hyphal tips attempting to penetrate a host cell. In contrast, no H2O2 accumulation was observed in hyphal tips growing along the middle lamella, or in appressoria or vesicles. On the basis of these findings we suggest that a locally restricted oxidative burst is involved in the temporal and spatial control of the intracellular colonization of M. truncatula cells by the AM-forming fungus G. intraradices. Received: 1 October 1998 / Accepted: 22 December 1998  相似文献   

11.
A sub-cellular proteomic approach was carried out to monitor membrane-associated protein modifications in response to the arbuscular mycorrhizal (AM) symbiosis. Membrane proteins were extracted from Medicago truncatula roots either inoculated or not with the AM fungus Glomus intraradices. Comparative two-dimensional electrophoresis revealed that 36 spots were differentially displayed in response to the fungal colonization including 15 proteins induced, 3 up-regulated and 18 down-regulated. Among them, seven proteins were found to be commonly down-regulated in AM-colonized and phosphate-fertilized roots. Twenty-five spots out of the 36 of interest could be identified by matrix assisted laser desorption/ionisation-time of flight and/or tandem mass spectrometry analyses. Excepting an acid phosphatase and a lectin, none of them was previously reported as being regulated during AM symbiosis. In addition, this proteomic approach allowed us for the first time to identify AM fungal proteins in planta.  相似文献   

12.
We examined effects of aboveground herbivory by spider mites (Tetranychus urticae) on colonization and activity of arbuscular mycorrhizal fungi (AMF; Gigaspora margarita) using potted plants (Lotus japonicus). We evaluated changes in arbuscular mycorrhizal (AM) association two ways: (1) conventional trypan blue staining of mycorrhizal hyphae to examine AMF biomass in roots (mycorrhizal colonization) and (2) vital staining for a mycorrhizal enzyme (succinate dehydrogenase, SDH) to examine mycorrhizal activity (SDH activity). Mycorrhizal colonization and SDH activity started to increase 4 days after aboveground herbivory, and returned to the initial levels in the absence of mite herbivory in 7 and 12 days, respectively. These results suggest that the change in AM association in response to mite herbivory is a short-term response.  相似文献   

13.
14.
The importance of arbuscular mycorrhizae (AM) in plant and ecosystem responses to global changes, e.g. elevated atmospheric CO2, is widely acknowledged. Frequently, increases in AM root colonization occur in response to increased CO2, but also the lack of significant changes has been reported. The goal of this study was to test whether arbuscular mycorrhizae (root colonization and composition of root colonization) respond to plants grown in elevated CO2 as a function of soil depth. We grew Bromus hordeaceus L. and Lotus wrangelianus Fischer & C. Meyer monocultures in large pots with a synthetic serpentine soil profile for 4 yr in an experiment, in which CO2 concentration was crossed factorially with NPK fertilization. When analyzing root infection separately for topsoil (0–15 cm) and subsoil (15–45 cm), we found large (e.g., about 5-fold) increases of AM fungal root colonization in the subsoil in response to CO2, but no significant changes in the corresponding topsoil of Bromus. Only the coarse endophyte AM fungi, not the fine endophyte AM fungi, were responsible for the observed increase in the bottom soil layer, indicating a depth-dependent shift in the AM community colonizing the roots, even at this coarse morphological level. Other response variables also had significant soil layer * CO2 interaction terms. The subsoil response would have been hidden in an unstratified assessment of the total root system, since most of the root length was concentrated in the top soil layer. The increased presence of mycorrhizae in roots deeper in the soil should be considered in sampling protocols, as it may be indicative of changed patterns of nutrient acquisition and carbon sequestration.  相似文献   

15.
Zhang Y  Guo LD  Liu RJ 《Mycorrhiza》2004,14(1):25-30
The colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with common pteridophytes were investigated in Dujiangyan, southwest China. Of the 34 species of ferns from 16 families collected, 31 were colonized by AM fungi. The mean percentage root length colonized was 15%, ranging from 0 to 47%. Nineteen species formed Paris-type and 10 intermediate-type AM. In two ferns, only rare intercellular non-septate hyphae or vesicles were observed in the roots and AM type could not be determined. Of the 40 AM fungal taxa belonging to five genera isolated from rooting-zone soils, 32 belonged to Glomus, five to Acaulospora, one to Archaeospora, one to Entrophospora, and one to Gigaspora. Acaulospora and Glomus were the dominant genera and Glomus versiforme was the most common species. The average AM spore density was 213 per 100 g air-dried soil and the average species richness was 3.7 AM species per soil sample. There was no correlation between spore density and percentage root length colonized by AM fungi.  相似文献   

16.
Glassop D  Smith SE  Smith FW 《Planta》2005,222(4):688-698
A very large number of plant species are capable of forming symbiotic associations with arbuscular mycorrhizal (AM) fungi. The roots of these plants are potentially capable of absorbing P from the soil solution both directly through root epidermis and root hairs, and via the AM fungal pathway that delivers P to the root cortex. A large number of phosphate (P) transporters have been identified in plants; tissue expression patterns and kinetic information supports the roles of some of these in the direct root uptake pathways. Recent work has identified additional P transporters in several unrelated species that are strongly induced, sometimes specifically, in AM roots. The primary aim of the work described in this paper was to determine how mycorrhizal colonisation by different species of AM fungi influenced the expression of members of the Pht1 gene families in the cereals Hordeum vulgare (barley), Triticum aestivum (wheat) and Zea mays (maize). RT-PCR and in-situ hybridisation, showed that the transporters HORvu;Pht1;8 (AY187023), TRIae;Pht1;myc (AJ830009) and ZEAma;Pht1;6 (AJ830010), had increased expression in roots colonised by the AM fungi Glomus intraradices,Glomus sp. WFVAM23 and Scutellospora calospora. These findings add to the increasing body of evidence indicating that plants that form AM associations with members of the Glomeromycota have evolved phosphate transporters that are either specifically or preferentially involved in scavenging phosphate from the apoplast between intracellular AM structures and root cortical cells. Operation of mycorrhiza-inducible P transporters in the AM P uptake pathway appears, at least partially, to replace uptake via different P transporters located in root epidermis and root hairs. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
The objective of this study was to determine patterns of ectomycorrhizas (ECM) and arbuscular mycorrhizas (AM) colonization associated with Alnus acuminata (Andean alder), in relation to soil parameters (electrical conductivity, field H2O holding capacity, pH, available P, organic matter, and total N) at two different seasons (autumn and spring). The study was conducted in natural forests of A. acuminata situated in Calilegua National Park (Jujuy, Argentina). Nine ECM morphotypes were found on A. acuminata roots. The ECM colonization was affected by seasonality and associated positively with field H2O holding capacity, pH, and total N and negatively associated with organic matter. Two morphotypes (Russula alnijorullensis and Tomentella sp. 3) showed significant differences between seasons. Positive and negative correlations were found between five morphotypes (Alnirhiza silkacea, Lactarius omphaliformis, Tomentella sp. 1, Tomentella sp. 3, and Lactarius sp.) and soil parameters (total N, pH, and P). A significant negative correlation was found between field H2O holding capacity and organic matter with AM colonization. Results of this study provide evidence that ECM and AM colonization of A. acuminata can be affected by some soil chemical edaphic parameters and indicate that some ECM morphotypes are sensitive to changes in seasonality and soil parameters.  相似文献   

18.
Tomato plants pre-colonised by the arbuscular mycorrhizal fungusGlomus mosseae showed decreased root damage by the pathogenPhytophthora nicotianae var.parasitica. In analyses of the cellular bases of their bioprotective effect, a prerequisite for cytological investigations of tissue interactions betweenG. mosseae andP. nicotianae v.parasitica was to discriminate between the hyphae of the two fungi within root tissues. We report the use of antibodies as useful tools, in the absence of an appropriate stain for distinguishing hyphae ofP. nicotianae v.parasitica from those ofG. mosseae inside roots, and present observations on the colonisation patterns by the pathogenic fungus alone or during interactions in mycorrhizal roots. Infection intensity of the pathogen, estimated using an immunoenzyme labelling technique on whole root fragments, was lower in mycorrhizal roots. Immunogold labelling ofP. nicotianae v.parasitica on cross-sections of infected tomato roots showed that inter or intracellular hyphae developed mainly in the cortex, and their presence induced necrosis of host cells, the wall and contents of which showed a strong autofluorescence in reaction to the pathogen. In dual fungal infections of tomato root systems, hyphae of the symbiont and the pathogen were in most cases in different root regions, but they could also be observed in the same root tissues. The number ofP. nicotianae v.parasitica hyphae growing in the root cortex was greatly reduced in mycorrhizal root systems, and in mycorrhizal tissues infected by the pathogen, arbuscule-containing cells surrounded by intercellularP. nicotianae v.parasitica hyphae did not necrose and only a weak autofluorescence was associated with the host cells. Results are discussed in relation to possible processes involved in the phenomenon of bioprotection in arbuscular mycorrhizal plants.  相似文献   

19.
Morphological types of arbuscular mycorrhizal (AM) fungi associated with Lotus glaber in sodic soils of the Salado River basin were studied. At least eight colonization patterns (IP) of AM fungi in roots of L. glaber were observed after 30 plants were analyzed. Arum- and Paris-type infection were found in the same plant species. This result supports the idea that AM morphology is not solely under plant control, but is also influenced by fungal identity. One infection pattern, presumably corresponding to Glomus intraradices, and a second, possibly assignable to Glomus tenue, were the most commonly found. Our results reinforce previous suggestions that G. intraradices is well adapted to sodic-saline conditions and may play a role in the resistance of L. glaber to these soils.  相似文献   

20.
Summary Phagocytosis ofNostoc filaments byGeosiphon, a fungus closely related to AM forming Glomales, was observed under light microscopes. Incorporation can only be performed ifNostoc primordia come into contact with growing hyphal tips of the fungus. The fungal wall just below the apex softens, and fungal cytoplasm is bulged out repeatedly covering the vegetativeNostoc cells but not the heterocytes. New heterocytes are differentiated by the internalised filament whose cells can increase up to ten times in volume after recovering from incorporation strain. TheNostoc cells are coated stepwise by short finger-shaped protuberances of the fungal hypha. These hernia-like outgrowths first remain separated, after 1 to 2 days they merge. Adjacent hyphal walls inside the complex covering disintegrate. Periphal fungal wall portions are united to form a smooth strong outer envelope. Internalisation is categorised as phagocytosis. The partnership is partly specific,Nostoc strains capable of living endocytobiotically are often partners in other symbioses besidesGeosiphon.Abbreviations AM arbuscular mycorrhiza (formerly VAM vesicular arbuscular mycorrhiza) - DIC differential interference contrast - LD light/dark Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号