首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process‐level differences in acclimation capacity among plant types. We assessed short‐term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (Vpmax), and foliar dark respiration (Rd) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C3 and C4), and climate of origin (tropical and nontropical) grown under fertilized, well‐watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C3 species tending to preferentially accelerate CO2‐limited photosynthetic processes and respiration and C4 species tending to preferentially accelerate light‐limited photosynthetic processes under warmer conditions. Rd acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. Rd acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting.  相似文献   

2.
When plants of Zea mays L. cv. LG11 that have been grown at optimal temperatures are transferred to chilling temperatures (0–12°C) photoinhibition of photosynthetic CO2 assimilation can occur. This study examines how growth at sub-optimal temperatures alters both photosynthetic capacity and resistance to chilling-dependent photoinhibition. Plants of Z. mays cv. LG11 were grown in controlled environments at 14, 17, 20 and 25°C. As a measure of the capacity for photosynthesis under light limiting conditions, the maximum quantum yields of CO2 assimilation (φa.c) and O2 evolution (φa.o) were determined for the laminae of the second leaves at photon fluxes of 50–150 μmol m-2s-1. To determine photosynthetic capacity at photon fluxes approaching light saturation, rates of CO2 uptake (A1500) and O2 evolution (A1500) were determined in a photon flux of 1500 μmol m-2s-1. In leaves developed at 14°C, φ and φ were 26 and 43%, respectively, of the values for leaves grown at 25°C. Leaves grown at 17°C showed intermediate reductions in φ and φ, whilst leaves developed at 20°C showed no significant differences from those grown at 25°C. Similar patterns of decrease were observed for A1500 and A1500.0 with decreasing growth temperature. Leaves developed at 25°C showed higher rates of CO2 assimilation at all light levels and measurement temperatures in comparison to leaves developed at 17 and 14°C. A greater reduction in A1500 relative to A1500.0 with decreasing growth temperature was attributed to increased stomatal limitation. Exposure of leaves to 800–1000 μmol m-2 s-1 when plant temperature was depressed to ca 6.5°C produced a photoinhibition of photosynthetic CO2 assimilation in all leaves. However, in leaves developed at 17°C the decrease in A1500 following this chilling treatment was only 25% compared to 90% in leaves developed at 25°C. Recovery following chilling was completed earlier in leaves developed at 17°C. The results suggest that growth at sub-optimal temperatures induces increased tolerance to exposure to high light at chilling temperatures. This is offset by the large loss in photosynthetic capacity imposed by leaf development at sub-optimal temperatures.  相似文献   

3.
Dallis grass (Paspalum dilatatum Poir.) is a C4/NADP‐ME gramineae, previously classified as semi‐tolerant to cold, although a complete study on this species acclimation process under a long‐term chilling and controlled environmental conditions has never been conducted. In the present work, plants of the variety Raki maintained at 25/18°C (day/night) (control) were compared with plants under a long‐term chilling at 10/8°C (day/night) (cold‐acclimated) in order to investigate how growth and carbon assimilation mechanisms are engaged in P. dilatatum chilling tolerance. Although whole plant mean relative growth rate (mean RGR) and leaf growth were significantly decreased by cold exposure, chilling did not impair plant development nor favour the investment in biomass below ground. Cold‐acclimated P. dilatatum cv. Raki had a lower leaf chlorophyll content, but a higher photosynthetic capacity at optimal temperatures, its range being shifted to lower values. Associated with this higher capacity to use the reducing power in CO2 assimilation, cold‐acclimated plants further showed a higher capacity to oxidize the primary stable quinone electron acceptor of PSII, QA. The activity and activation of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were not significantly affected by the long‐term chilling. Cold‐acclimated P. dilatatum cv. Raki apparently showed a lower transfer of excitation energy from the light‐harvesting complex of photosystem II to the respective reaction centre and enhancement of radiationless energy‐dissipating mechanisms at suboptimal temperatures. Overall, long‐term chilling resulted in several effects that comprise responses with an intermediate character of both chilling‐tolerant and –sensitive plants, which seem to play a significant role in the survival and acclimation of P. dilatatum cv. Raki at low temperature.  相似文献   

4.
Correia  O.  Diaz Barradas  M.C. 《Plant Ecology》2000,149(2):131-142
Previous studies in spatial distribution of male and female shrubs of Pistacia lentiscus have demonstrated that less perturbed areas, older communities with a well developed cover, have male-biased sex ratios, whereas in abandoned old agricultural areas there are no significant differences between the number of male and female plants. In this study, we analyse both sexes in terms of their photosynthetic features that could provide a physiological basis for habitat partitioning between sexes. Rates of light-saturated assimilation and stomatal conductance were studied in male and female plants during summer. Assimilation rates were higher in the morning than in the afternoon and mean daily maximum assimilation rates reached 10.9 and 6.6 mol m–2 s–1, for male and female plants, respectively. In the absence of drought stress (laboratory conditions), the measured photosynthetic characteristics of leaves of male and female plants, provided by fluorescence studies and light and CO2 response curves, were similar. Under natural stress conditions however, lower CO2 assimilation rates and stomatal conductances were recorded in female plants. The differences in the light response curve of effective quantum yield (II) recorded under stress conditions showed also higher quantum yield for male plants under low irradiances. From this study we suggest that the differences observed between male and females are largely due to different degrees of stomatal control rather than to differences in photosynthetic activity, leading to higher water use efficiency (WUE) in female plants. However, despite the higher leaf control of water loss by females, they reduce the water potential to the same values as male plants, probably due to specific characteristics of the root system or of the conducting xylem. These results suggest that the ecological advantage of male plants in older communities is due to a higher competition for water uptake, while in the youngest open areas is the higher WUE in female plants that confer an ecological advantage.  相似文献   

5.
Net photosynthetic rates and mesophyll conductances were measured under standardized conditions for leaves of two C3 and one C4 annual species grown at temperatures of 20 to 32°C. Plants were grown with varying day and night temperatures, and also at constant temperatures equal to all the day and night temperatures used. Plants were grown with 8, 12, and 16 hours of light per day. This design allowed determination of whether photosynthetic characteristics were best correlated with day, night, mean, or time-weighted mean temperatures, The results showed that for Glycine max (L.) Merr. (C3) night temperature was most important in determining photosynthetic characteristics, while in Helianthus annuus L. (C3) and Amaranthus hypochondriacus L. (C4) the time-weighted mean temperature was most important. The results for all species were consistent with the hypothesis that development of photosynthetic characteristics is related to a balance between the rate of leaf expansion and the rate of photosynthesis under the growth conditions.  相似文献   

6.
 Data are presented for gas exchange in exposed leaves in field grown Ziziphus mauritiana (Lamk.) at a highland site and potted seedlings at a hotter lowland site in tropical Zimbabwe, together with indigenous and locally-grown commercial fruit crops. The field trial at the highland site included local Ziziphus mauritiana, introduced Indian Z. mauritiana (cv. Umran), fig and peach. In all species assimilation was highest early in the morning, followed by a gradual decline throughout the remainder of the day. Leaf conductance followed the same trend as assimilation for fig and peach, but in Ziziphus cv. Umran and Ziziphus Musau, conductance tracked irradiance, reaching a maximum in the middle of the day. In all species, sub-stomatal CO2 concentrations increased with declining assimilation indicating that during high irradiance, assimilation was mainly controlled by mesophyll limitations rather than conductance. At the highland site both Ziziphus cv. Umran and Musau were highly productive, with light saturated assimilation significantly higher than in either fig or peach (P < 0.01). At the warmer lowland site, assimilation and conductance in Ziziphus Musau were also higher than in other indigenous fruit tree species growing under similar conditions. Despite increased assimilation in Ziziphus, when compared to the other species, there was no increase in the assimilation ratio (ratio of assimilation/conductance) which was offset by the high conductance values. The data indicate that under conditions where water was not limiting, young Ziziphus showed no enhanced stomatal control over water loss, but was highly productive (per unit leaf area) relative to the other species. Received: 17 October 1996 / Accepted: 8 January 1997  相似文献   

7.
Carbonic anhydrase (CA, EC 4.2.1.1) catalyses the first reaction in the C4 photosynthetic pathway, the conversion of atmospheric CO2 to bicarbonate in the mesophyll cytosol. To examine the importance of the enzyme to the functioning of the C4 photosynthetic pathway, Flaveria bidentis (L.) Kuntze, a C4 dicot, was genetically transformed with an antisense construct in which the cDNA encoding a putative cytosolic CA (CA3) was placed under the control of a constitutive promoter. Some of the primary transformants had impaired CO2 assimilation rates and required high CO2 for growth. The T1 progeny of four primary transformants were used to examine the quantitative relationship between leaf CA activity and CO2 assimilation rate. CA activity was determined in leaf extracts with a mass spectrometric technique that measured the rate of 18O exchange from doubly labelled 13C18O2. Steady‐state CO2 assimilation rates were unaffected by a decrease in CA activity until CA activity was less than 20% of wild type when they decreased steeply. Transformants with less than 10% of wild‐type CA activity had very low CO2 assimilation rates and grew poorly at ambient CO2 partial pressure. Reduction in CA activity also increased the CO2 partial pressure required to saturate CO2 assimilation rates. The present data show that CA activity is essential for the functioning of the C4 photosynthetic pathway.  相似文献   

8.
Chilling‐induced photosynthetic impairment was examined in leaves of maize (Zea mays L.) seedlings of two cultivars, one adapted to western Europe and one adapted to Mexican highlands. Three experiments were performed in a controlled environment. The effects of chilling night temperatures, of chilling at high light intensity and of variable chilling day temperatures on photosynthetic parameters, were evaluated. Chilling in the dark period resulted in stomatal limitation of net photosynthesis. Chilling at moderate to high light intensities caused chilling‐dependent photoinhibition of CO2 uptake. Photobleached maize leaves did not resume normal photosynthetic function. Maize cv. Batan 8686 from the highlands of Mexico was less susceptible to photosynthetic damage than maize cv. Bastion adapted for cultivation in W. Europe, when exposed to chilling night temperatures, or to mild chilling photoinhibitory conditions.  相似文献   

9.
Freezing and thawing of the endemic moss species Grimmia antarctici Card, caused photoinhibition. When snow cover was removed from moss in the field, resulting in exposure to fluctuating temperatures and light conditions, photoinhibition, measured as a reduction in the ratio of variable to maximum chlorophyll a fluorescence (Fv/Fm), was observed. The extent of photoinhibition was highly variable and appeared to be reversible during periods of warmer temperatures. A series of controlled laboratory studies found that the light conditions that prevail between freezing and thawing events influenced the recovery from photoinhibition observed during freezing and thawing, with low light conditions facilitating the greatest rates of recovery. After four cycles of freezing and thawing, recovery from photoinhibition in hydrated moss was achieved within 12 h of transfer to 5°C and 15 μmol quanta m?2 s?1. These results favour the hypothesis that photoinhibition observed during freezing represents a protective process involving the down-regulation of photo-system II when photosynthetic carbon assimilation is limited by low temperatures.  相似文献   

10.
M. T. Allen  R. W. Pearcy 《Oecologia》2000,122(4):479-486
Photosynthetic performance under dynamic light regimes was assessed in four different species of tropical shrubs from the family Rubiaceae via field gas exchange measurements conducted on Barro Colorado Island, Panamá. Rates of photosynthetic induction and induction loss were assessed throughout the day in both the wet and dry seasons in order to determine the relative roles of stomata and biochemistry in limiting photosynthetic performance under transient light conditions. A high degree of coordination was observed between stomatal conductance and biochemical capacity for CO2 assimilation during induction. Rates of biochemical and overall photosynthetic induction sharply decreased when initial stomatal conductance fell below a narrow range of critical values. Time of day or season did not affect rates of biochemical deactivation upon shading, but did influence stomatal closure, which often exerted a significant influence over induction loss in the darkness. In measurements of total assimilation due to a 60-s light pulse, both biochemical activity and stomatal conductance were linearly related to total CO2 uptake. Only during the mornings of the wet season was stomatal conductance consistently high enough to be non-limiting to dynamic photosynthetic performance. At all other times, stomatal behavior exercised significant influence over induction times, photosynthetic induction loss, and total CO2 uptake from 60-s light pulses. Received: 17 March 1999 / Accepted: 26 October 1999  相似文献   

11.
The effect of growth temperatures on the photosynthetic performance of field grown maize (Zea mays cv. LG11) was examined for crops sown on 1 May and 28 June 1991. During the period of growth, 2 May to 10 August, the early-sown crop experienced temperatures below 10 °C on 33 occasions compared with only one for the crop sown on 28 June. The prolonged period of low temperatures throughout May and beginning of June were associated with a marked depression in CO2 assimilation rates at all light levels in the early-sown treatment. Chill-induced depression of the photosynthetic light-response curve reflected a sustained reduction in canopy leaf photosynthesis and crop radiation-use efficiency (RUE). During the early stages of growth, RUE was 65% lower in the early- than late-sown treatment, with no marked recovery observed in the former treatment until approximately three weeks after chilling conditions had ceased. Data show a close correlation between chill-induced depression of quantum yield () and RUE, with corresponding reductions in the light-saturated rates of CO2 assimilation (Pmax). The convexity of the light-response curve recovered most rapidly from chilling temperatures, and at least three weeks before any improvement in RUE. It is concluded that photosynthetic productivity of immature maize stands is less sensitive to changes in the convexity of the light response, than to changes in either or Pmax.  相似文献   

12.
Summary Routine field determination of the parameters characterizing the activity of the photosynthetic apparatus is often difficult when attached branches of tall trees have to be used for gas exchange measurement. If severed twigs could be used, determining these parameters would be greatly facilitated. Because stomatal conductance changes when twigs or leaves are detached, CO2 assimilation is usually altered. Thus, measurements made at ambient CO2 concentration fail to accurately assess the activity of the photosynthetic apparatus because photosynthetic rates greatly depend on the supply of carbon dioxide. However, when photosynthetic carboxylation reactions are saturated by increased CO2 partial pressure in the mesophyll, CO2 assimilation rates no longer depend on instantaneous stomatal conductance, as shown by gas exchange measurements of spruce (Picea abies) twigs prior to and following detachment. Because net photosynthesis following detachment at saturating CO2 remains constant for a minimum of 15 min, photosynthetic measurements of severed twigs may be reliable. This length of time is sufficient for detaching and recutting the twig, assembling a portable minicuvette system, re-establishing steady-state conditions with the gas analyser system, and reading the data over a reasonable period of time. The method described measures the maximal photosynthetic CO2 assimilation of spruce needles of a single age-class from detached spruce twigs under the following conditions: saturating light, saturating external CO2-partial pressure, standardized temperature and air humidity in the field. The method is applicable as a routine procedure to characterize the status of the photosynthetic apparatus of spruce trees that may be damaged in the process of forest decline.  相似文献   

13.
Gas exchange characteristics and chlorophyll fluorescence of the Canarian endemic pine ( Pinus canariensis) were measured during the day for a year in a field stand on Tenerife, Canary Islands, Spain. Diurnal tendencies of gas exchange were variable depending on ambient conditions. In general they paralleled photosynthetic photon flux density with only one peak at midday, except on summer days with high air vapour pressure deficit (VPD), when needles exhibited a severe midday depression of CO 2 assimilation rate ( A), in parallel with a reduction of stomatal conductance ( g s). The internal CO 2 concentration tendencies during the day suggest that stomatal closure was the main cause of the midday depression of photosynthesis. Chlorophyll fluorescence data corroborate this assertion, with the parameter F v/ F m reaching high values throughout day and year. P. canariensis living in the sub-tropic exhibited high values of A (maximal A value of 17 µmol m -2 s -1) and high optimal needle temperature for photosynthesis (25°C) which were at the upper limit of the values given for conifers and similar only to data obtained for some pine species adapted to habitats at similar latitudes. g s was reduced to half when VPD attained 40 mbar, allowing this pine to have high A/ g s values during high evaporative demand conditions.  相似文献   

14.
Dinoflagellates are important primary producers and major causative agents of harmful algal blooms in the global ocean. Despite the great ecological significance, the photosynthetic carbon acquisition by dinoflagellates is still poorly understood. The pathways of photosynthetic carbon assimilation in a marine dinoflagellate Prorocentrum donghaiense under both in situ and laboratory-simulated bloom conditions were investigated using a combination of metaproteomics, qPCR, stable carbon isotope and targeted metabolomics approaches. A rapid consumption of dissolved CO2 to generate high biomass was observed as the bloom proceeded. The carbon assimilation genes and proteins including intracellular carbonic anhydrase 2, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase and RubisCO as well as their enzyme activities were all highly expressed at the low CO2 level, indicating that C4 photosynthetic pathway functioned in the blooming P. donghaiense cells. Furthermore, δ13C values and content of C4 compound (malate) significantly increased with the decreasing CO2 concentration. The transition from C3 to C4 pathway minimizes the internal CO2 leakage and guarantees efficient carbon fixation at the low CO2 level. This study demonstrates the existence of C4 photosynthetic pathway in a marine dinoflagellate and reveals its important complementary role to assist carbon assimilation for cell proliferation during the bloom period.  相似文献   

15.
Marek  M.V.  Urban  O.  Šprtová  M.  Pokorný  R.  Rosová  Z.  Kulhavý  J. 《Photosynthetica》2002,40(2):259-267
The long-term impact of elevated concentration of CO2 on assimilation activity of sun-exposed (E) versus shaded (S) foliage was investigated in a Norway spruce stand [Picea abies (L.) Karst, age 14 years] after three years of cultivation in two domes with adjustable windows (DAW). One DAW was supplied with ambient air [AC, ca. 350 µmol(CO2) mol–1) and the second with elevated CO2 concentration [EC = AC plus 350 µmol(CO2) mol–1]. The pronounced vertical profile of the photosynthetic photon flux density (PPFD) led to the typical differentiation of the photosynthetic apparatus between the shaded and sun needles. Namely, photon-saturated values of maximal net photosynthetic rate (P Nmax) and apparent quantum yield () were significantly higher/lower for E-needles as compared with the S-ones. The prolonged exposure to EC was responsible for the apparent assimilatory activity stimulation observed mainly in deeply shaded needles. The degree of this stimulation decreases in the order: S-needles dense part > S-needles sparse part > E-needles dense part > E-needles sparse part. In exposed needles some signals on a manifestation of the acclimation depression of the photosynthetic activity were found. The long-term effect of EC was responsible for the decrease of nitrogen content of needles and for its smoother gradient between E- and S-needles. The obtained results indicate that the E- and S-foliage respond differently to the long-term impact of EC.  相似文献   

16.
Proietti  P.  Famiani  F. 《Photosynthetica》2002,40(2):171-176
Diurnal and seasonal changes in photosynthetic characteristics, leaf area dry mass (ADM), and reducing sugar and total chlorophyll (Chl) contents of leaves of Frantoio, Leccino, and Maurino olive cultivars were investigated in Central Italy. Leaf net photosynthetic rate (P N) per unit leaf area changed during the growing season and during the day, but the cultivar did not significantly influence the changes. In both young and one-year-old leaves the highest P N values were observed in October, while the lowest values were recorded in August and December; during the day the highest P N values were generally found in the morning. The pattern of photosynthetic response to photosynthetic photon flux density (PPFD) of leaves was similar in the three genotypes. Sub-stomatal CO2 concentration (C I) tended to increase when P N decreased. The increase in C I was accompanied by a stomatal conductance to water vapor (g S) decrease. In general, P N and dark respiration rate (R D) were correlated. Transpiration rate (E), with no differences between the cultivars, increased from April to July, decreased greatly in August, then increased in October and finally decreased again in December. Leaf water content increased from April to June, remained high until mid July, decreased significantly in August, remaining constant until December with no differences associated with the cultivar. In both young and one-year-old leaves, the leaf water content per unit leaf area was slightly greater in Frantoio than in the other two cultivars. The one-year-old leaves had a higher Chl content than the young ones. The cultivar did not substantially influence the leaf reducing sugar content which decreased from April to August, when it reached the lowest level, then increased rapidly until October. During the day the reducing sugar content did not change significantly. The leaf ADM was slightly higher in Frantoio than in the other cultivars and one-year-old leaves had higher values than the young ones. Leaf ADM decreased from April to June and then tended to increase until December. During the day there were no substantial variations.  相似文献   

17.
Naturally grown trees of Mediterranean evergreen oak (Quercus ilex L.), representing the climax species of the region, were enclosed in six large open-top chambers and exposed to ambient and elevated CO2 concentrations during a 3 year period. Maximum daily net photosynthetic rates measured at the two different CO2 concentrations were from 30 to 100% higher in elevated than in ambient [CO2] throughout the experimental period. The increase in maximum daily photosynthesis was also accompanied by a 93% rise in the apparent quantum yield of CO2 assimilation, measured during periods of optimum soil moisture conditions. Hence, no clear evidence of down-regulation of net photosynthetic activity was found. Interactions between atmospheric CO2 concentration and plant water stress were studied by following the natural evolution of drought in different seasons and years. At each level of water stress, the maximum rate of carbon assimilation was higher in elevated than in ambient [CO2] by up to 100%. Analysis of in vivo chlorophyll fluorescence parameters in normal (21%) and low (2%) oxygen concentrations provided useful insights into the functioning and stability of the photosynthetic processes. The photochemical efficiency of PSII (Fv/Fm) progressively decreased as drought conditions became more evident; this trend was accentuated under elevated [CO2]. Thermal de-excitation processes were possibly more significant under elevated than under ambient [CO2], in a combination of environmental stresses. This research suggests two possible conclusions: (i) a ‘positive’ interaction between elevated [CO2] and carbon metabolism can be obtained through relief of water stress limitation in the summer months, and (ii) elevated [CO2], under drought conditions, may also enhance the significance of slow-relaxing quenching.  相似文献   

18.
Environmental factors affecting photosynthetic activity of the typical vernal speciesErythronium japonicum Decne were examined on the floor of a deciduous broad-leavedQuercus mongolica forest (Q.m. stand) and on bare land left undisturbed for 4 years after forest clearing (bare stand). Daytime solar irradiation and air and leaf temperatures at the bare stand were significantly higher than those at theQ.m. stand. The relative air humidity was very low and did not differ much between the stands, although the leaf-air vapor pressure differences (VPD) at the bare stand were about twice as high as those at theQ.m. stand. The plants at both stands were supplied with sufficient soil water throughout their growing season by a large snowmelt. However, the aboveground parts of the plants at the bare stand were subjected to much more severe heat stress, caused by the strong radiations and high leaf temperatures, and water stress, caused by the highly transpiring conditions, than those at theQ.m. stand. When the radiation on leaves, leaf temperatures and VPD in the assimilation chamber were changed from those observed at theQ.m. stand to those at the bare stand, the photosynthetic rate and stomatal conductance fell significantly. However, the rate and conductance were immediately restored to the respective values near those measured under the conditions at theQ.m. stand when only VPD was dropped to the value similar to that observed at theQ.m. stand. These results indicate that the photosynthetic rate of the plants at the bare stand was lowered largely by a decrease in stomatal conductance. The internal CO2 partial pressure was considerably greater in leaves placed under environmental conditions similar to those at the bare stand.  相似文献   

19.
Abstract It had been hypothesized that if daily CO2 assimilation is to be maximized at a given level of daily transpiration, stomatal apertures should change during the day so that the gain ratio (?A/?g)/(?E/?g) remains constant. These partial differentials describe the sensitivity of assimilation rate (A) and transpiration rate (E) to changes in stomatal conductance (g). Experiments were conducted to determine whether stomata respond to environment in a manner which results in constant gain ratios. Gas–exchange measurements were made of the stomatal and photosynthetic responses of Vigna unguiculata L. Walp. in controlled environments. Leaf conductance to water vapour responded to step changes in temperature and humidity so that for different steady-state conditions the gain ratio remained constant on all but one day. Depletion of water in the root zone resulted in day-to-day increases in gain ratio which were correlated with decreases in maximum leaf conductance to water vapour. The significance of the results for plant adaptation and stomatal mechanisms, and methods for measuring the gain ratio, are discussed.  相似文献   

20.
The photosynthetic performance of Lasallia pustulata and Umbilicaria spodochroa was measured both in the field on granitic rock in southern Norway and in the laboratory under controlled conditions of light and temperature. In the field thallus temperatures varied between ? 2 and + 5 °C during the daylight period in January 1994. In situ water contents were between 50 and 400% d.wt. in L. pustulata and between 100 and 500% d.wt. in U. spodochroa. The lichens were active during the whole period of investigation. Photosynthetic rates reached 13.03 μmol CO2 g Chl?1 s?1 in L. pustulata and 5.56 μmol CO2 g Chl?1 s?1 in U. spodochroa. Ice formation on the thallus surface did not impede CO2 exchange. Light was mainly the limiting factor, as could be confirmed by the laboratory experiments. In general, habitat conditions never provided optimum photosynthetic rates but photosynthetic carbon balance was positive during 4 of the 5 days investigated. The coldest day was photosynthetically almost as efficient as the warmest day during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号