首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the isolation of a 3,276 base pair cDNA for the bovine natriuretic peptide receptor-B (NPR-B). Expression of this clone in Cos-P cells demonstrates that it encodes an agonist-dependent guanylyl cyclase. Porcine CNP stimulates the activity of this receptor up to 200-fold with an ED50 of 12±2 nM, whereas brain natriuretic peptide C-type natriuretic peptide (CNP) and atrial natriuretic factor (ANF) are less efficacious. In addition, ligand binding studies indicate that this receptor exhibits the pharmacology appropriate for the bovine NPR-B. CNP binds to Cos-P cell membranes expressing this clone with a Kd of 13±1 pM, and natriuretic peptides compete for [125I]-CNP binding with a rank order of pCNP>pBNP>rANF. Thus, the expressed receptor-guanylyl cyclase exhibits the expected pharmacological profile for ligand binding and cyclase activation of the bovine NPR-B receptor.Abbreviations BSA bovine serum albumin - dNTP deoxynucleotide triphosphate - SDS sodium dodecyl sulfate - DEAE-dextran diethylaminoethyl-dextran - EDTA ethylenediamine tetraacetic acid - Tris Tris(hydroxymethyl)aminomethane - DMSO dimethyl sulfoxide - RP-HPLC reverse phase-high performance liquid chromatography - AMV avian myeloblastosis virus - Arg arginine - Lys lysine  相似文献   

2.
The achondroplastic mouse is a spontaneous mutant characterized by disproportionate dwarfism with short limbs and tail due to disturbed chondrogenesis during endochondral ossification. These abnormal phenotypes are controlled by an autosomal recessive gene (cn). In this study, linkage analysis using 115 affected mice of F2 progeny mapped the cn locus on an approximately 0.8-cM region of chromosome 4, and natriuretic peptide receptor 2 (Npr2) gene was identified as the most potent candidate for the cn mutant in this region. This gene encodes a receptor for C-type natriuretic peptide (CNP) that positively regulates longitudinal bone growth by producing cGMP in response to CNP binding to the extracellular domain. Sequence analyses of the Npr2 gene in cn/cn mice revealed a T to G transversion leading to the amino acid substitution of highly conserved Leu with Arg in the guanylyl cyclase domain. In cultured chondrocytes of cn/cn mice, stimulus with CNP did not significantly increase intracellular cGMP concentration, whereas it increased in +/+ mice. Transfection of the mutant Npr2 gene into COS-7 cells also showed similar results, indicating that the missense mutation of the Npr2 gene in cn/cn mice resulted in disruption of the guanylyl cyclase activity of the receptor. We therefore concluded that the dwarf phenotype of cn/cn mouse is caused by a loss-of-function mutation of the Npr2 gene, and cn/cn mouse will be a useful model to further study the molecular mechanism regulating endochondral ossification by CNP/natriuretic peptide receptor B signal.  相似文献   

3.
The binding of atrial natriuretic peptide and C-type natriuretic peptide (CNP) to the guanylyl cyclase-linked natriuretic peptide receptors A and B (NPR-A and -B), respectively, stimulates increases in intracellular cGMP concentrations. The vasoactive peptides vasopressin, angiotensin II, and endothelin inhibit natriuretic peptide-dependent cGMP elevations by activating protein kinase C (PKC). Recently, we identified six in vivo phosphorylation sites for NPR-A and five sites for NPR-B and demonstrated that the phosphorylation of these sites is required for ligand-dependent receptor activation. Here, we show that phorbol 12-myristate 13-acetate, a direct activator of PKC, causes the dephosphorylation and desensitization of NPR-B. In contrast to the CNP-dependent desensitization process, which results in coordinate dephosphorylation of all five sites in the receptor, phorbol 12-myristate 13-acetate treatment causes the dephosphorylation of only one site, which we have identified as Ser(523). The conversion of this residue to alanine or glutamate did not reduce the amount of mature receptor protein as indicated by detergent-dependent guanylyl cyclase activities or Western blot analysis but completely blocked the ability of PKC to induce the dephosphorylation and desensitization of NPR-B. Thus, in contrast to previous reports suggesting that PKC directly phosphorylates and inhibits guanylyl cyclase-linked natriuretic peptide receptors, we show that PKC-dependent dephosphorylation of NPR-B at Ser(523) provides a possible molecular explanation for how pressor hormones inhibit CNP signaling.  相似文献   

4.
The homodimeric transmembrane receptor natriuretic peptide receptor B (NPR-B [also known as guanylate cyclase B, GC-B, and GUC2B]; gene name NPR2) produces cytoplasmic cyclic GMP from GTP on binding its extracellular ligand, C-type natriuretic peptide (CNP). CNP has previously been implicated in the regulation of skeletal growth in transgenic and knockout mice. The autosomal recessive skeletal dysplasia known as "acromesomelic dysplasia, type Maroteaux" (AMDM) maps to an interval that contains NPR2. We sequenced DNA from 21 families affected by AMDM and found 4 nonsense mutations, 4 frameshift mutations, 2 splice-site mutations, and 11 missense mutations. Molecular modeling was used to examine the putative protein change brought about by each missense mutation. Three missense mutations were tested in a functional assay and were found to have markedly deficient guanylyl cyclase activity. We also found that obligate carriers of NPR2 mutations have heights that are below the mean for matched controls. We conclude that, although NPR-B is expressed in a number of tissues, its major role is in the regulation of skeletal growth.  相似文献   

5.
C-type natriuretic peptide (CNP) is a member of the natriuretic peptide family and acts through the membrane bound guanylyl cyclase linked natriuretic peptide receptor B (NPR-B) to increase intracellular cGMP. Activation of the CNP/NPR-B pathway in pulmonary epithelium has been linked to the inhibition of amiloride-sensitive sodium absorption and to the stimulation of the cystic fibrosis transmembrane conductance regulator (CFTR). Given the importance of ion movement across the pulmonary epithelium of the fetal and newborn lung, we sought to examine the expression of CNP and NPR-B in pulmonary epithelium of the developing fetal lamb and following the transition to air breathing. Lambs were sacrificed at 100 and 136 days of gestation and at 3 days, and 4 weeks after full term delivery. Lung sections were immunostained for CNP and NPR-B. At 100 days of gestation, staining for CNP and NPR-B was absent within all pulmonary epithelium. At 136 days of gestation, prominent staining for both CNP and NPR-B was seen within alveolar type II cells, non-ciliated cells of the distal airways (Clara cells), and ciliated epithelium of the upper airways. At both 3 days and 4 weeks following birth, staining for CNP and NPR-B was absent in alveolar type II cells, ciliated bronchial epithelium and was markedly reduced in Clara cells. The presence of CNP and NPR-B within the pulmonary epithelium in the nearterm fetal period and its rapid downregulation following birth suggests that CNP may contribute to the maintenance of the fluid-filled lung through the regulation of trans-epithelial ion flux.  相似文献   

6.
Sellitti DF  Koles N  Mendonça MC 《Peptides》2011,32(9):1964-1971
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.  相似文献   

7.
Natriuretic peptide receptor A (NPR-A) is an essential cardiovascular regulator that is stimulated by atrial natriuretic peptide and B-type natriuretic peptide, whereas natriuretic peptide receptor B (NPR-B) stimulates long bone growth in a C-type natriuretic peptide-dependent manner. Many reports indicate that ATP is essential for NPR-A and NPR-B activation. Current models suggest that natriuretic peptide binding to receptor extracellular domains causes ATP binding to intracellular kinase homology domains, which derepresses adjacent catalytic domains. Here, we report 100-fold activations of natriuretic peptide receptors in the absence of ATP. The addition of a nonhydrolyzable ATP analog had no effect at early time periods (measured in seconds) but increased cGMP production about 2-fold after longer incubations (measured in minutes), consistent with a stabilization, not activation, mechanism. These data indicate that ATP does not activate natriuretic peptide receptors as has been repeatedly reported. Instead, ATP increases activity primarily by maintaining proper receptor phosphorylation status but also serves a previously unappreciated enzyme stabilizing function.  相似文献   

8.
Potthast R  Potter LR 《Peptides》2005,26(6):1001-1008
Natriuretic peptides are a family of hormones/paracrine factors that regulate blood pressure, cardiovascular homeostasis and bone growth. The mammalian family consists of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). A family of three cell surface receptors mediates their physiologic effects. Two are receptor guanylyl cyclases known as NPR-A/GC-A and NPR-B/GC-B. Peptide binding to these enzymes stimulates the synthesis of the intracellular second messenger, cGMP, whereas a third receptor, NPR-C, lacks enzymatic activity and functions primarily as a clearance receptor. Here, we provide a brief review of how various desensitizing agents and/or conditions inhibit NPR-A and NPR-B by decreasing their phosphorylation state.  相似文献   

9.
This study investigated the effect of water deprivation on the expression of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) mRNA, and the ability of NPR-B to generate cGMP in the Spinifex Hopping mouse, Notomys alexis. This rodent is a native of central and western Australia that is well adapted to survive in arid environments. Initially, CNP and NPR-B cDNAs (partial for NPR-B) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. RT-PCR analysis showed CNP mRNA expression in the kidney, proximal and distal colon and small intestine, whilst NPR-B mRNA expression was found in the kidney, proximal and distal colon and the atria. Using a semi-quantitative multiplex PCR technique, the expression of renal CNP and NPR-B mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control hopping mice (access to water). Water deprivation significantly decreased the relative levels of CNP and NPR-B mRNA expression in both the 7- and 14-day water-deprived hopping mice, when compared to control hopping mice. In contrast, the ability of CNP to stimulate cGMP production was significantly increased after 14 days of water deprivation. This study shows that alterations in the renal CNP/NPR-B system may be an important physiological adjustment when water is scarce.  相似文献   

10.
C-type natriuretic peptide binding to natriuretic peptide receptor-B (NPR-B) stimulates cGMP synthesis, which regulates vasorelaxation, cell proliferation, and bone growth. Here, we investigated the mechanistic basis for hyperosmotic and lysophosphatidic acid-dependent inhibition of NPR-B. Whole cell cGMP measurements and guanylyl cyclase assays indicated that acute hyperosmolarity decreased NPR-B activity in a reversible, concentration- and time-dependent manner, whereas chronic exposure had no effect. Acute hyperosmolarity elevated intracellular calcium in a concentration-dependent fashion that paralleled NPR-B desensitization. A calcium chelator, but not a protein kinase C inhibitor, blocked both calcium elevations and desensitization. Hyperosmotic medium stimulated NPR-B dephosphorylation, and the receptor was rapidly rephosphorylated and resensitized when the hypertonic media was removed. Lysophosphatidic acid also inhibited NPR-B in a calcium- and phosphorylation-dependent process, consistent with calcium being a universal regulator of NPR-B. The absolute requirement of dephosphorylation in this process was demonstrated by showing that a receptor with glutamates substituted at all known NPR-B phosphorylation sites is unresponsive to hyperosmotic stimuli. This is the first study to measure the phosphorylation state of an endogenous guanylyl cyclase and to link intracellular calcium elevations with its dephosphorylation.  相似文献   

11.
C-type natriuretic peptide (CNP), which was recently found to be a selective ligand for one of the two known natriuretic peptide receptor guanylyl cyclases (NPR-B), potently stimulates cGMP production in cultured rat vascular smooth muscle cells (VSMC) and exerts potent antiproliferative effects on the cells. To investigate the structural requirements of CNP for stimulation of cGMP accumulation via NPR-B, we prepared CNP analogs and tested them on cultured rat VSMC. Our results indicate that only the ring portion of CNP with a disulfide bond (CNP(6-22)) participates in stimulation of cGMP accumulation, especially the sequence Leu9-Lys10-Leu11 in the ring portion executes essential roles for both elevation of cGMP and selectivity of the ligand for NPR-B. We also found a good correlation between the activities of the CNP analogs for stimulation of cGMP accumulation and inhibition of DNA synthesis.  相似文献   

12.
The natriuretic peptide receptors, NPR-A and NPR-B, are two members of the newly described class of receptor guanylyl cyclases. The kinaselike domain of these proteins is an important regulator of the guanylyl cyclase activity. To begin to understand the molecular nature of this type of regulation, we made complete and partial deletions of the kinase domain in NPR-A and NPR-B. We also made chimeric proteins in which the kinase domains of NPR-A and NPR-B were exchanged or replaced with kinase domains from structurally similar proteins. Complete deletion of the kinase homology domain in NPR-A and NPR-B resulted in constitutive activation of the guanylyl cyclase. Various partial deletions of this region produced proteins that had no ability to activate the enzyme with or without hormone stimulation. The kinase homology domain can be exchanged between the two subtypes with no effect on regulation. However, structurally similar kinaselike domains, such as from the epidermal growth factor receptor or from the heat-stable enterotoxin receptor, another member of the receptor guanylyl cyclase family, were not able to regulate the guanylyl cyclase activity correctly. These findings suggest that the kinaselike domain of NPR-A and NPR-B requires strict sequence conservation to maintain proper regulation of their guanylyl cyclase activity.  相似文献   

13.
C-型钠尿肽与血管损伤性疾病   总被引:2,自引:0,他引:2  
C-型钠尿肽(C-type natriuretic peptide, CNP)作为钠尿肽家系的一员, 主要是由血管内皮分泌,CNP与血管平滑肌细胞钠尿肽受体-B(NPR-B)结合,激活颗粒型鸟苷酸环化酶,促进细胞内cGMP 水平升高,以旁分泌和/或自分泌方式调节循环系统功能稳态.CNP广泛分布于血管系统,尤其在内皮细胞中高表达.CNP具有利钠、利尿、调节血管张力、抑制血管平滑肌细胞迁移、增殖等作用,与高血压、动脉粥样硬化、血栓形成、冠脉成形术后再狭窄和血管钙化等多种血管损伤性疾病密切相关.  相似文献   

14.
Atrial natriuretic peptide (ANP) and the closely-related peptides BNP and CNP are highly conserved cardiovascular hormones. They bind to single transmembrane-spanning receptors, triggering receptor-intrinsic guanylyl cyclase activity. The "truncated" type-C natriuretic peptide receptor (NPR-C) has long been called a clearance receptor because it lacks the intracellular guanylyl cyclase domain, though data suggest it might negatively couple to adenylyl cyclase via G(i). Here we report the molecular cloning and characterization of the Xenopus laevis type-C natriuretic peptide receptor (XNPR-C). Analysis confirms the presence of a short intracellular C-terminus, as well as a high similarity to fish and mammalian NPR-C. Injection of XNPR-C mRNA into Xenopus oocytes resulted in expression of high affinity [(125)I]ANP binding sites that were competitively and completely displaced by natriuretic analogs and the unrelated neuropeptide vasoactive intestinal peptide (VIP). Measurement of cAMP levels in mRNA-injected oocytes revealed that XNPR-C is negatively coupled to adenylyl cyclase in a pertussis toxin-sensitive manner. When XNPR-C was co-expressed with PAC(1) receptors for pituitary adenylyl cyclase-activating polypeptide (PACAP), VIP and natriuretic peptides counteracted the cAMP induction by PACAP. These results suggest that VIP and natriuretic peptides can potentially modulate the action of PACAP in cells where these receptors are co-expressed.  相似文献   

15.
Single atrial myocytes were isolated from the bullfrog heart and studied under current and voltage clamp conditions to determine the electrophysiological effects of the C-type natriuretic peptide (CNP). CNP (10(-8) M) significantly shortened the action potential and reduced its peak amplitude after the application of isoproteronol (10(-7) M). In voltage clamp studies, CNP inhibited isoproteronol-stimulated L-type Ca2+ current (ICa) without any significant effect on the inward rectifier K+ current. The effects of cANF (10(-8) M), a selective agonist of the natriuretic peptide C receptor (NPR-C), were very similar to those of CNP. Moreover, HS-142-1, an antagonist of the guanylyl cyclase-linked NPR-A and NPR-B receptors did not alter the inhibitory effect of CNP on ICa. Inclusion of cAMP in the recording pipette to stimulate ICa at a point downstream from adenylyl cyclase increased ICa, but this effect was not inhibited by cANF. These results provide the first demonstration that CNP can inhibit ICa after binding to NPR-C, and suggest that this inhibition involves a decrease in adenylyl cyclase activity, which leads to reduced intracellular levels of cAMP.  相似文献   

16.
Natriuretic peptide receptors A (NPR-A) and B (NPR-B) mediate most effects of natriuretic peptides by synthesizing cGMP. ATP increases the activity of these receptors by an unknown mechanism. We recently reported that a nonhydrolyzable form of ATP, adenylyl imidodiphosphate (AMPPNP), stabilizes but is not required for the activation of NPR-A and NPR-B in membranes from highly overexpressing cells. Here, we repeated these studies on receptors expressed in endogenous settings. Kinetic analysis indicated that both AMPPNP and ATP dramatically decrease the apparent K(m) of both receptors for GTP but had little effect on the V(max). The EC(50) for AMPPNP decreased as substrate concentration increased whereas the magnitude of the effect was greater at lower GTP concentrations. ATP increased the activity of a mutant receptor containing glutamates substituted for all known phosphorylation sites similarly to the wild-type receptor, consistent with a phosphorylation independent mechanism. Finally, the putative ATP binding sites were investigated. Mutation of the ATP modulatory domain region had no effect, but mutation of K535A dramatically diminished ANP-dependent cyclase activity in a manner that was unresponsive to ATP. Mutation of the highly conserved 630-KSS to AAA (all alanines) resulted in an expressed receptor that had no detectable guanylyl cyclase activity. We conclude that ATP is not required for the initial activation of NPRs but does increase activity over time by reducing the apparent K(m) for GTP.  相似文献   

17.
18.
Single-transmembrane natriuretic peptide clearance receptor (NPR-C), which is devoid of a cytoplasmic guanylyl cyclase domain, interacts with pertussis toxin (PTx)-sensitive G proteins to activate endothelial nitric oxide synthase (eNOS) expressed in gastrointestinal smooth muscle cells. We examined the ability of NPR-C to activate other effector enzymes in eNOS-deficient tenia coli smooth muscle cells; these cells expressed NPR-C and NPR-B but not NPR-A. Atrial natriuretic peptide (ANP), the selective NPR-C ligand cANP-(4-23), and vasoactive intestinal peptide (VIP) inhibited (125)I-ANP and (125)I-VIP binding to muscle membranes in a pattern indicating high-affinity binding to NPR-C. Interaction of VIP with NPR-C was confirmed by its ability to inhibit (125)I-ANP binding to membranes of NPR-C-transfected COS-1 cells. In tenia muscle cells, all ligands selectively activated G(i-1) and G(i-2); VIP also activated G(s) via VIP(2) receptors. All ligands stimulated phosphoinositide hydrolysis, which was inhibited by ANP-(1-11), PTx, and antibodies to phospholipase C-beta3 (PLC-beta3) and Gbeta. cANP-(4-23) contracted tenia muscle cells; contraction was blocked by U-73122 and PTx and by antibodies to PLC-beta3 and Gbeta in intact and permeabilized muscle cells, respectively. VIP and ANP contracted muscle cells only after inhibition of cAMP- and cGMP-dependent protein kinases. ANP and cANP-(4-23) inhibited forskolin-stimulated cAMP in a PTx-sensitive fashion. We conclude that NPR-C is coupled to activation of PLC-beta3 via betagamma-subunits of G(i-1) and G(i-2) and to inhibition of adenylyl cyclase via alpha-subunits.  相似文献   

19.
The C type natriuretic peptide (CNP) is a peptide hormone stimulating vasorelaxation and inhibiting cell proliferation. CNP activates the type B natriuretic peptide receptor (NPR-B), known as the guanylate cyclase B membrane enzyme, which results in the cGMP release. To study functional properties of NPR-B, its gene fragments were expressed in methylotrophic yeasts Pichia pastoris. Conditions were found providing for secretion of functionally active recombinant proteins NPR-Bs and NPR-B1 into the cultural medium in a yield of 25 mg/ml culture. Their specific activity was 0.97 and 0.93 mumol cGMP min-1 mg-1 protein, respectively. It was shown that NPR-B belongs to the family of Ser/Thr protein kinases and can be autophosphorylated at the serine residues.  相似文献   

20.
UV cross-linking studies of the natriuretic pepti de receptor- B (NPR-B )using radio labeled C-type natriuretic peptide (CNP) indicate that onlyfully glycosylated receptors are capable of binding ligand. We thereforeused site-directed mutagenesis to determine which potential glycosylationsites are occupied by carbohydrate, and the relevant mutants werecharacterized in order to understand the function of carbohydrate additionat those sites. Our results suggest that five of seven potential N-linkedglycosylation sites are modified. In addition, mutation of asparagine 24results in a loss of ~90% of receptor activity. This mutant isexpressed at levels comparable to the wild-type receptor, and its activityis not significantly different from that of wild-type NPR-B in terms of EC50for CNP. Ligand binding studies on this mutant further show that althoughthere is no change in affinity for ligand, ~90% of receptor bindingis lost. These data suggest that many of the mutant receptors are simply notproperly folded. Our results indicate that glycosylation of asparagine 24 ofNPR-B receptors may be critical for the formation of a competent ligandbinding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号