首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sprouty genes encode cytoplasmic membrane-associated proteins that inhibit receptor tyrosine kinase signaling. Four orthologs of Drosophila Sprouty (dSpry) (Sprouty1-4) have been identified in mammals. Physiological function of Sprouty1 and Sprouty2 has been investigated using gene targeting approaches, however to date detailed examination of Sprouty4 knockout (KO) mice has not been reported. In this study, Sprouty4 KO mice were generated and characterized. Although a significant fraction of Sprouty4 KO mice died shortly after birth due to mandible defects, the remainder were viable and fertile. Growth retardation was observed for most Sprouty4-deficient mice, with nearly all Sprouty4 KO mice having polysyndactyly. ERK activation was sustained in Sprouty4 KO mouse embryonic fibroblasts (MEFs) in response to FGF, but not to EGF. Sprouty2 and Sprouty4 double KO (DKO) mice were embryonic lethal and showed severe defects in craniofacial, limb, and lung morphogenesis. These findings suggest both redundant and non-redundant functions for Sprouty2 and Sprouty4 on embryonic development and FGF signaling.  相似文献   

2.
An extracellular serine protease cascade generates the ligand that activates the Toll signaling pathway to establish dorsoventral polarity in the Drosophila embryo. We show here that this cascade is regulated by a serpin-type serine protease inhibitor, which plays an essential role in confining Toll signaling to the ventral side of the embryo. This role is strikingly analogous to the function of the mammalian serpin antithrombin in localizing the blood-clotting cascade, suggesting that serpin inhibition of protease activity may be a general mechanism for achieving spatial control in diverse biological processes.  相似文献   

3.
4.
Multiple signaling molecules, including Fibroblast Growth Factor (FGF) and Wnt, induce two patches of ectoderm on either side of the hindbrain to form the progenitor cell population for the inner ear, or otic placode. Here we report that in Spry1, Spry2 compound mutant embryos (Spry1−/−; Spry2−/− embryos), the otic placode is increased in size. We demonstrate that the otic placode is larger due to the recruitment of cells, normally destined to become cranial epidermis, into the otic domain. The enlargement of the otic placode observed in Spry1−/−; Spry2−/− embryos is preceded by an expansion of a Wnt8a expression domain in the adjacent hindbrain. We demonstrate that both the enlargement of the otic placode and the expansion of the Wnt8a expression domain can be rescued in Spry1−/−; Spry2−/− embryos by reducing the gene dosage of Fgf10. Our results define a FGF-responsive window during which cells can be continually recruited into the otic domain and uncover SPRY regulation of the size of a putative Wnt inductive center.  相似文献   

5.
Contact-dependent inhibition of EGFR signaling by Nf2/Merlin   总被引:2,自引:0,他引:2       下载免费PDF全文
The neurofibromatosis type 2 (NF2) tumor suppressor, Merlin, is a membrane/cytoskeleton-associated protein that mediates contact-dependent inhibition of proliferation. Here we show that upon cell-cell contact Merlin coordinates the processes of adherens junction stabilization and negative regulation of epidermal growth factor receptor (EGFR) signaling by restraining the EGFR into a membrane compartment from which it can neither signal nor be internalized. In confluent Nf2(-/-) cells, EGFR activation persists, driving continued proliferation that is halted by specific EGFR inhibitors. These studies define a new mechanism of tumor suppression, provide mechanistic insight into the poorly understood phenomenon of contact-dependent inhibition of proliferation, and suggest a therapeutic strategy for NF2-mutant tumors.  相似文献   

6.
Ung CY  Li H  Ma XH  Jia J  Li BW  Low BC  Chen YZ 《FEBS letters》2008,582(15):2283-2290
Deregulations of EGFR endocytosis in EGFR-ERK signaling are known to cause cancers and developmental disorders. Mutations that impaired c-Cbl-EGFR association delay EGFR endocytosis and produce higher mitogenic signals in lung cancer. ROCK, an effector of small GTPase RhoA was shown to negatively regulate EGFR endocytosis via endophilin A1. A mathematical model was developed to study how RhoA and ROCK regulate EGFR endocytosis. Our study suggested that over-expressing RhoA as well as ROCK prolonged ERK activation partly by reducing EGFR endocytosis. Overall, our study hypothesized an alternative role of RhoA in tumorigenesis in addition to its regulation of cytoskeleton and cell motility.  相似文献   

7.
8.
Wingless (Wg) is a morphogen required for the patterning of many Drosophila tissues. Several lines of evidence implicate heparan sulfate-modified proteoglycans (HSPGs) such as Dally-like protein (Dlp) in the control of Wg distribution and signaling. We show that dlp is required to limit Wg levels in the matrix, contrary to the expectation from overexpression studies. dlp mutants show ectopic activation of Wg signaling at the presumptive wing margin and a local increase in extracellular Wg levels. dlp somatic cell clones disrupt the gradient of extracellular Wg, producing ectopic activation of high threshold Wg targets but reducing the expression of lower threshold Wg targets where Wg is limiting. Notum encodes a secreted protein that also limits Wg distribution, and genetic interaction studies show that dlp and Notum cooperate to restrict Wg signaling. These findings suggest that modification of an HSPG by a secreted hydrolase can control morphogen levels in the matrix.  相似文献   

9.
10.
Sprouty2 (Spry2) is a prominent member of a protein family with crucial functions in the modulation of signal transduction. One of its main actions is the repression of mitogen-activated protein kinase (MAPK) pathway in response to growth factor-induced signalling. A common single nucleotide polymorphism within the Spry2 gene creates two protein variants where a proline adjacent to the serine rich domain is converted to an additional serine. Both protein variants perform similar functions although their efficiency in fulfilling these tasks varies. In this report, we used biochemical fractionation methods as well as confocal microscopy to analyse quantitative and qualitative differences in the distribution of Spry2 variants. We found that Spry2 proteins localize not solely to the plasma membrane, but also to other membrane engulfed compartments like for example the Golgi apparatus. In these less dense organelles, predominantly slower migrating forms reside indicating that posttranslational modification contributes to the distribution profile of Spry2. However there is no significant difference in the distribution of the two variants. Additionally, we found that Spry2 could be found exclusively in membrane fractions irrespective of the mitogen availability and the phosphorylation status. Considering the interference of extracellular signal-regulated kinase (ERK) activation in the cytoplasm, both Spry2 variants inhibited the levels of phosphorylated ERK (pERK) significantly to a similar extent. In contrast, the induction profiles of pERK levels were completely different in the nuclei. Again, both Spry2 variants diminished the levels of pERK. While the proline variant lowered the activation throughout the observation period, the serine variant failed to interfere with immediate accumulation of nuclear pERK levels, but the signal duration was shortened. Since the extent of the pERK inhibition in the nuclei was drastically more pronounced than in the cytoplasm, we conclude that Spry2 – in addition to its known functions as a repressor of general ERK phosphorylation – functions as a spatial repressor of nucleic ERK activation. Accordingly, a dominant negative version of Spry2 was only able to enhance the pERK levels of serum-deprived cells in the cytosol, while in the nucleus the intensity of the pERK signal in response to serum addition was significantly increased.  相似文献   

11.
Sprouty, an intracellular inhibitor of Ras signaling   总被引:21,自引:0,他引:21  
Casci T  Vinós J  Freeman M 《Cell》1999,96(5):655-665
Sprouty was identified in a genetic screen as an inhibitor of Drosophila EGF receptor signaling. The Egfr triggers cell recruitment in the eye, and sprouty- eyes have excess photoreceptors, cone cells, and pigment cells. Sprouty's function is, however, more widespread. We show that it also interacts genetically with the receptor tyrosine kinases Torso and Sevenless, and it was first discovered through its effect on FGF receptor signaling. In contrast to an earlier proposal that Sprouty is extracellular, we show by biochemical analysis that Sprouty is an intracellular protein, associated with the inner surface of the plasma membrane. Sprouty binds to two intracellular components of the Ras pathway, Drk and Gap1. Our results indicate that Sprouty is a widespread inhibitor of Ras pathway signal transduction.  相似文献   

12.
Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, we report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGF signaling and is involved in palatal shelf elevation.  相似文献   

13.
Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2   总被引:2,自引:0,他引:2  
Mammalian Sprouty (Spry) gene expression is rapidly induced upon activation of the FGF receptor signaling pathway in multiple cell types including cells of mesenchymal and epithelial origin. Spry2 inhibits FGF-dependent ERK activation and thus Spry acts as a feedback inhibitor of FGF-mediated proliferation. In addition, Spry2 interacts with the ring-finger-containing E3 ubiquitin ligase, c-Cbl, in a manner that is dependent upon phosphorylation of Tyr55 of Spry2. This interaction results in the poly-ubiquitination and subsequent degradation of Spry2 by the proteasome. Here, we describe the identification of another E3 ubiquitin ligase, human Seven-in-Absentia homolog-2 (SIAH2), as a Spry2 interacting protein. We show by yeast two-hybrid analysis that the N-terminal domain of Spry2 and the ring finger domain of SIAH2 mediated this interaction. Co-expression of SIAH2 resulted in proteasomal degradation of Spry1, 2, and to a lesser extent Spry4. The related E3 ubiquitin-ligase, SIAH1, had little effect on Spry2 protein stability when co-expressed. Unlike c-Cbl-mediated degradation of Spry2, SIAH2-mediated degradation was independent of phosphorylation of Spry2 on Tyr55. Spry2 was also phosphorylated on Tyr227, and phosphorylation of this residue was also dispensable for SIAH2-mediated degradation of Spry2. Finally, co-expression of SIAH2 with Spry2 resulted in a rescue of FGF2-mediated ERK phosphorylation. These data suggest a novel mechanism whereby Spry2 stability is regulated in a manner that is independent of tyrosine phosphorylation, and provides an addition level of control of Spry2 protein levels.  相似文献   

14.
We have analyzed the spatial-temporal regulation of epidermal growth factor receptor (EGFR) phosphorylation by the orphan erbB2 receptor. It is shown that EGFR association with erbB2 is sufficient to prolong and enhance the net phosphorylation of EGFR, independent of the kinase activity of erbB2. This enhanced EGFR signaling was rather caused by erbB2-mediated retention of phosphorylated EGFR at the plasma membrane (PM), thereby preventing EGFR dephosphorylation and signal termination by endomembrane-bound protein tyrosine phosphatases (PTPs). EGF-induced EGFR internalization was indeed blocked in the presence of high levels of erbB2 or if cbl binding of EGFR was impaired. This erbB2-mediated blockage of the entry of activated EGFR into clathrin-coated vesicles could be alleviated by antibody-mediated disruption of the interaction between EGFR and erbB2. These results identify erbB2-mediated dominant trapping of phosphorylated EGFR at the PM as a mechanism that prolongs EGFR signaling, by sequestration of activated EGFR away from intracellular sites of high PTP activity.  相似文献   

15.
Graded Hedgehog (Hh) signaling patterns the spinal cord dorsoventral axis by inducing and positioning distinct precursor domains, each of which gives rise to a different type of neuron. These domains also generate glial cells, but the full range of cell types that any one precursor population produces and the mechanisms that diversify cell fate are unknown. By fate mapping and clonal analysis in zebrafish, we show that individual ventral precursor cells that express olig2 can form motoneurons, interneurons and oligodendrocytes. However, olig2+ precursors are not developmentally equivalent, but instead produce subsets of progeny cells in a spatially and temporally biased manner. Using genetic and pharmacological manipulations, we provide evidence that these biases emerge from Hh acting over time to set, maintain, subdivide and enlarge the olig2+ precursor domain and subsequently specify oligodendrocyte development. Our studies show that spatial and temporal differences in Hh signaling within a common population of neural precursors can contribute to cell fate diversification.  相似文献   

16.
Raf-MEK-extracellular signal-regulated kinase (Erk) signaling initiated by growth factor-engaged receptor tyrosine kinases (RTKs) is modulated by an intricate network of positive and negative feedback loops which determine the specificity and spatiotemporal characteristics of the intracellular signal. Well-known antagonists of RTK signaling are the Sprouty proteins. The activity of Sprouty proteins is modulated by phosphorylation. However, little is known about the kinases responsible for these posttranslational modifications. We identify DYRK1A as one of the protein kinases of Sprouty2. We show that DYRK1A interacts with and regulates the phosphorylation status of Sprouty2. Moreover, we identify Thr75 on Sprouty2 as a DYRK1A phosphorylation site in vitro and in vivo. This site is functional, since its mutation enhanced the repressive function of Sprouty2 on fibroblast growth factor (FGF)-induced Erk signaling. Further supporting the idea of a functional interaction, DYRK1A and Sprouty2 are present in protein complexes in mouse brain, where their expression overlaps in several structures. Moreover, both proteins copurify with the synaptic plasma membrane fraction of a crude synaptosomal preparation and colocalize in growth cones, pointing to a role in nerve terminals. Our results suggest, therefore, that DYRK1A positively regulates FGF-mitogen-activated protein kinase signaling by phosphorylation-dependent impairment of the inhibitory activity of Sprouty2.  相似文献   

17.
Overexpressionof the epidermal growth factor receptors (EGFR) in polarized kidneyepithelial cells caused them to appear in high numbers at both thebasolateral and apical cell surfaces. We utilized these cells to lookfor differences in the regulation and signaling of apical vs.basolateral EGFR. Apical and basolateral EGFR were biologically activeand mediated EGF-induced cell proliferation to similar degrees.Receptor downregulation and endocytosis were less efficient at theapical surface, resulting in prolonged EGF-induced tyrosine kinaseactivity at the apical cell membrane. Tyrosine phosphorylation of EGFRsubstrates known to mediate cell proliferation, Src-homologous andcollagen protein (SHC), extracellularly regulated kinase 1 (ERK1), andERK2 could be induced similarly by activation of apical or basolateralEGFR. Focal adhesion kinase was tyrosine phosphorylated more bybasolateral than by apical EGFR; however, -catenin was tyrosinephosphorylated to a much greater degree following the activation ofmislocalized apical EGFR. Thus EGFR regulation and EGFR-mediatedphosphorylation of certain substrates differ at the apical andbasolateral cell membrane domains. This suggests that EGFRmislocalization could result in abnormal signal transduction andaberrant cell behavior.

  相似文献   

18.
Epithelial cells are dependent on extracellular matrix (ECM) attachment for maintenance of metabolic activity and suppression of apoptosis. Here we show that loss of ECM attachment causes down-regulation of epidermal growth factor receptor (EGFR) and β1 integrin protein and mRNA expression and that ErbB2, which is amplified in 25% of breast tumors, reverses these effects of ECM deprivation. ErbB2 rescue of β1 integrin mRNA and protein in suspended cells is dependent on EGFR, however, the rescue of EGFR expression does not require β1 integrin. We show that there is a significant decrease in the stability of EGFR in ECM-detached cells that is reversed by ErbB2 overexpression. Rescue of both EGFR and β1 integrin protein by ErbB2 is dependent on Erk activity and induction of its downstream target Sprouty2, a protein known to regulate EGFR protein stability. Interestingly, expression of EGFR and β1 integrin protein is more dependent on Erk/Sprouty2 in ECM-detached ErbB2-overexpressing cells when compared with ECM-attached cells. These results provide further insight into the ErbB2-driven anchorage independence of tumor cells and provide a new mechanism for regulation of EGFR and β1 integrin expression in ECM-detached cells.  相似文献   

19.
Invadosomes are adhesive mechanosensory modules composed of a dense F-actin core surrounded by a ring of adhesion molecules and able to infiltrate compact tissue environment in physiological and pathological conditions. These structures comprise podosomes that are found in a variety of cells under physiological conditions and invadopodia in transformed or cancer cells. Invadosomes are regulated by extracellular matrix signals and are endowed with degradative machinery for extracellular matrix. The ability of extracellular matrix signals to orchestrate the building, dynamics, and function of invadosomes is based on mechano-chemical integrin outside-in signaling and requires integrin cross-talk. This review highlights recent findings that place Src as an inducer and PKC as an amplifier in the assembly of integrin stimulated invadosome through mechanotransduction and polarized endo/exocytic trafficking pathways for key proteolytic and enzymatic activities in a temporally and spatially confined manner.  相似文献   

20.
The ability of cells to respond to changes in nutrient availability is essential for the maintenance of metabolic homeostasis and viability. One of the key cellular responses to nutrient withdrawal is the upregulation of autophagy. Recently, there has been a rapid expansion in our knowledge of the molecular mechanisms involved in the regulation of mammalian autophagy induction in response to depletion of key nutrients. Intracellular amino acids, ATP, and oxygen levels are intimately tied to the cellular balance of anabolic and catabolic processes. Signaling from key nutrient-sensitive kinases mTORC1 and AMP-activated protein kinase (AMPK) is essential for the nutrient sensing of the autophagy pathway. Recent advances have shown that the nutrient status of the cell is largely passed on to the autophagic machinery through the coordinated regulation of the ULK and VPS34 kinase complexes. Identification of extensive crosstalk and feedback loops converging on the regulation of ULK and VPS34 can be attributed to the importance of these kinases in autophagy induction and maintaining cellular homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号