首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.Studies of plant-pathogen interactions strongly suggest that under the pressure to survive, plants and pathogens continuously react to one another''s defense arsenal and evolve to overcome these defenses (13). Plants recognize pathogen-associated molecular patterns, such as fungal cell wall fragments composed of chitin, glucans, oligosaccharides, or glycoprotein peptides (32). It has been established that pathogens evolved effector proteins to avoid plant surveillance mechanisms that recognize pathogen-associated molecular patterns and this in turn led to the evolution of plant surveillance mechanisms that recognize pathogen-specific effector proteins. All pathogen recognition mechanisms induce intracellular signaling that culminates in the synthesis of factors, such as antimicrobial plant proteins, that help in limiting the severity of infection (74). The antimicrobial proteins are therefore among the ultimate effectors of plant defense. There is evidence of recognition between plant antimicrobial proteins and pathogen-specific molecules (74). Therefore, pathogen mechanisms of resistance to the antimicrobial proteins and the antimicrobial proteins themselves must have coevolved. Consequently, we postulated that a screen for fungal genes that alter the sensitivity of a phytopathogen to an antifungal protein of the host plant (that is, a cognate plant defense effector) would lead to identification of genes involved in controlling pathogenicity, in controlling access of the antifungal protein to its target fungal molecules (such as genes controlling cell surface composition), and in controlling detoxification mechanisms.The plant antifungal protein selected to test this hypothesis was osmotin. Osmotin is an antifungal protein that is overexpressed in and secreted by salt-adapted cultured tobacco (Nicotiana tabacum) cells (63). It is a member of a family of ubiquitous plant proteins, referred to as plant pathogenesis-related proteins of family 5 (PR-5), that are implicated in defense against fungi (74). Osmotin gene and protein expression is induced by biotic stresses, and overexpression of osmotin delays development of disease symptoms in transgenic plants (41, 42, 43, 84). The genetic bases of the susceptibility and resistance of Saccharomyces cerevisiae to osmotin have been explored in our laboratory (49, 50). The results show that specific interactions of osmotin with the plasma membrane are responsible for cell death signaling. However, because the cell wall governs access of osmotin to the plasma membrane, differences in cell wall composition largely account for the differential osmotin sensitivity of various S. cerevisiae strains, and specific cell wall components play a significant role in modulating osmotin toxicity (30, 31, 49, 50, 81, 82). These studies in the model nonpathogenic fungus, S. cerevisiae, support our hypothesis that a screen for genes that alter the sensitivity of a phytopathogenic fungus to an antifungal defense effector protein of the host plant will uncover genes involved in controlling access of the antifungal protein to its target fungal molecules.Osmotin, like other plant defense antifungal proteins, has specific but broad-spectrum antifungal activity (74). One of the most osmotin-sensitive phytopathogenic fungi is Fusarium oxysporum. F. oxysporum is an ascomycete fungus, like S. cerevisiae, and has been touted as an appropriate multihost model for studying fungal virulence (53). It is a soilborne plant pathogen of economic significance, because it causes vascular wilt disease on a large variety of crop plants and produces toxic food contaminants (17, 58). In humans it also causes skin, nail, and eye disease that can become serious or life-threatening illnesses in immunocompromised patients (52, 69). F. oxysporum f. sp. lycopersici, F. oxysporum f. sp. nicotianae, and F. oxysporum f. sp. meloni, like S. cerevisiae, are quite sensitive to osmotin (1, 51; M. L. Narasimhan, unpublished data). Furthermore, it was recently shown that overexpression in F. oxysporum f. sp. nicotianae of an S. cerevisiae cell wall glycoprotein that increases the osmotin resistance of S. cerevisiae also increases the osmotin resistance of the plant pathogen and its virulence on tobacco, the osmotin-producing host plant (51). This suggested that osmotin resistance mechanisms may be conserved between S. cerevisiae and F. oxysporum and that S. cerevisiae could be used as a tool to uncover F. oxysporum genes that control osmotin sensitivity or resistance.In the current study, we expressed an F. oxysporum f. sp. nicotianae cDNA library in the osmotin-sensitive S. cerevisiae strain BWG1-7a and selected genes for their ability to increase osmotin tolerance. We report here the identification and characterization of three FOR (Fusarium Osmotin Resistance) genes that affect the cell wall in S. cerevisiae. The product of FOR1 has homology with a putative cell surface glycoprotein; FOR2 encodes glutamine:fructose-6-phosphate amidotransferase (GFAT), an enzyme that catalyzes the first step in the biosynthetic pathway leading to amino sugar-containing macromolecules, such as glycoproteins and chitin (64); and FOR3 has high homology with S. cerevisiae SSD1, a gene that controls cell wall composition and virulence (31, 78). FOR2 and FOR3 are the functional equivalents of the corresponding S. cerevisiae genes. Our parallel analysis using two model fungi verifies the notion that cell wall proteins play a critical role in determining the sensitivity/resistance of fungi to osmotin. In addition, these results implicate that the tobacco defense protein, osmotin, can serve as an effective/useful tool in identifying genes that control cell wall composition not only in a model fungus, such as S. cerevisiae, but also in phytopathogenic fungi, such as F. oxysporum.  相似文献   

3.
The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea , Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae , F. oxysporum f. sp. melonis and Rhizoctonia solani , as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1 -silenced lines. In addition, the petals of the NpPDR1 -silenced lines were spotted 15%–20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2–4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani , F. oxysporum and P. nicotianae . With B. cinerea , such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum , but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1 -silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.  相似文献   

4.
Osmotin is a plant PR-5 protein. It has a broad spectrum of antifungal activity, yet also exhibits specificity for certain fungal targets. The structural bases for this specificity remain unknown. We show here that full sensitivity of Saccharomyces cerevisiae cells to the PR-5 protein osmotin is dependent on the function of MNN2, MNN4 and MNN6. MNN2 is an alpha-1, 2-mannosyltransferase catalyzing the addition of the first mannose to the branches on the poly l,6-mannose backbone of the outer chain of cell wall N-linked mannans. MNN4 and MNN6 are required for the transfer of mannosylphosphate to cell wall mannans. Null mnn2, mnn4 or mnn6 mutants lack phosphomannans and are defective in binding osmotin to the fungal cell wall. Both antimannoprotein antibody and the cationic dye alcian blue protect cells against osmotin cytotoxicity. MNN1 is an alpha-1,3-mannosyltransferase that adds the terminal mannose to the outer chain branches of N-linked mannan, masking mannosylphosphate. Null mnn1 cells exhibit enhanced osmotin binding and sensitivity. Several cell wall mannoproteins can bind to immobilized osmotin, suggesting that their polysaccharide constituent determines osmotin binding. Our results demonstrating a causal relationship between cell surface phosphomannan and the susceptibility of a yeast strain to osmotin suggest that cell surface polysaccharides of invading pathogens control target specificity of plant PR-5 proteins.  相似文献   

5.
Antimicrobial activities of many defense proteins are profoundly altered by inorganic cations, thereby controlling disease pathologies in a number of mammalian systems, such as cystic fibrosis in humans. Protein-based active defense systems in plants also are influenced by cations; however, little is known of how these cation effects are mediated. Cytotoxicity of the pathogenesis-related protein osmotin against the model fungus Saccharomyces cerevisiae was progressively abolished by K+. By the use of S. cerevisiae mannosylation mutants, this effect was shown to require mannosephosphate residues in the cell wall. However, osmotin activity was not suppressed by even high concentrations of Ca2+. Rather, submillimolar levels of Ca2+ specifically facilitated osmotin's activity, as well as its binding to the cell surface. This effect also was dependent on mannosephosphate groups on the cell surface, and appeared to require negative charge on a portion of the osmotin protein. Results suggest that Ca2+ modulates osmotin action by facilitating its binding to the fungal cell surface, but that K+ blocks this interaction by competing for binding to mannosephosphate groups. Therefore, we have identified glycan interaction as a mechanism for antimicrobial protein activity modulation by cations, a pattern that may apply to diverse innate defense responses.  相似文献   

6.
The antifungal activity of the PR-5 family of plant defense proteins has been suspected to involve specific plasma membrane component(s) of the fungal target. Osmotin is a tobacco PR-5 family protein that induces apoptosis in the yeast Saccharomyces cerevisiae. We show here that the protein encoded by ORE20/PHO36 (YOL002c), a seven transmembrane domain receptor-like polypeptide that regulates lipid and phosphate metabolism, is an osmotin binding plasma membrane protein that is required for full sensitivity to osmotin. PHO36 functions upstream of RAS2 in the osmotin-induced apoptotic pathway. The mammalian homolog of PHO36 is a receptor for the hormone adiponectin and regulates cellular lipid and sugar metabolism. Osmotin and adiponectin, the corresponding "receptor" binding proteins, do not share sequence similarity. However, the beta barrel domain of both proteins can be overlapped, and osmotin, like adiponectin, activates AMP kinase in C2C12 myocytes via adiponectin receptors.  相似文献   

7.
Membrane permeabilizing plant defensive proteins first encounter the fungal cell wall that can harbor specific components that facilitate or prevent access to the plasma membrane. However, signal transduction pathways controlling cell wall composition in filamentous fungi are largely unknown. We report here that the deposition of cell wall constituents that block the action of osmotin (PR-5), an antifungal plant defense protein, against Aspergillus nidulans requires the activity of a heterotrimeric G-protein mediated signaling pathway. The guanidine nucleotide GDPbetaS, that locks G-proteins in a GDP-bound inactive form, inhibits osmotin-induced conidial lysis. A dominant interfering mutation in FadA, the alpha-subunit of a heterotrimeric G-protein, confers resistance to osmotin. A deletion mutation in SfaD, the beta-subunit of a heterotrimeric G-protein also increases osmotin resistance. Aspergillus nidulans strains bearing these mutations also have increased tolerance to SDS, reduced cell wall porosity and increased chitin content in the cell wall.  相似文献   

8.
9.
Combinations of ethylene and methyl jasmonate (E/MeJA) synergistically induced members of both groups 1 and 5 of the pathogenesis-related (PR) superfamily of defense genes. E/MeJA caused a synergistic induction of PR-1b and osmotin (PR-5) mRNA accumulation in tobacco seedlings. E/MeJA also synergistically activated the osmotin promoter fused to a [beta]-glucuronidase marker gene in a tissue-specific manner. The E/MeJA responsiveness of the osmotin promoter was localized on a -248 to +45 fragment that exhibited responsiveness to several other inducers. E/MeJA induction also resulted in osmotin protein accumulation to levels similar to those induced by osmotic stress. Of the several known inducers of the osmotin gene, including salicylic acid (SA), fungal infection is the only other condition known to cause substantial osmotin protein accumulation in Wisconsin 38, a tobacco cultivar that does not respond hypersensitively to tobacco mosaic virus. Based on the ability of the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine to block ethylene induction of PR-1b mRNA accumulation and its inability to block osmotin mRNA induction by ethylene, these two PR gene groups appeared to have at least partially separate signal transduction pathways. Stimulation of osmotin mRNA accumulation by okadaic acid indicated that another protein kinase system is involved in regulation of the osmotin gene. SA, which is known to induce pathogen resistance in tobacco, could not induce the osmotin gene as much as E/MeJA and neither could it induce PR-1b as much as SA and MeJA combined.  相似文献   

10.
Heat-stable mycelial extracts of the nonpathogenic fungus Trichoderma longibrachiatum induced resistance in tobacco seedlings ( Nicotiana tabacum L. cv. Wisconsin 38) to the pathogen Phytophthora parasitica var. nicotianae (race 0), which did not involve a hypersensitive response. Resistance could not be induced with mycelial extract prepared in the same manner from P. parasitica . The nonpathogenic mycelial extract induced expression of PR-1b and osmotin (PR-5) genes to a higher level than did mycelial extract from the pathogenic fungus. The tissue-specific pattern of PR gene induction by the nonpathogenic mycelial extract was different from that of the pathogenic mycelial extract and was consistent with the ability of the former to cause disease resistance. The expression patterns of these two PR genes and the accumulations of their encoded proteins also were affected by salicylic acid (SA), methyl jasmonate (MeJA), ethylene (E) and combinations of these plant signal messengers. However, only combined SA and MeJA treatment mimicked the pattern of PR gene mRNA and protein accumulation induced by the nonpathogenic mycelial extract. E inhibitors blocked both mycelial extract-induced and SA/MeJA-induced PR gene expression, and the cis pattern of responsiveness on the osmotin promoter was the same for the mycelial extract, SA, E, or E/MeJA. Seedlings treated with P. parasitica spores in the presence of SA/MeJA were protected from pathogen colonization. However, these seedlings exhibited symptoms of cell death (disease symptoms) both in the absence and presence of P. parasitica spores, in contrast to seedlings treated with nonpathogenic mycelial extract, which remained healthy. These results suggest that the signal transduction pathways for elicitation of defense responses by exogenously applied heat-stable nonpathogenic mycelial extract and SA/MeJA overlap at the point of PR protein induction but are not identical.  相似文献   

11.
AIMS: The aim of this work was to study the effect of high temperatures generated during composting process, on the phytopathogen fungus Fusarium oxysporum f.sp. melonis. This investigation was achieved by both in vivo (semipilot-scale composting of horticultural wastes) and in vitro (lab-scale thermal treatments) assays. METHODS AND RESULTS: Vegetable residues infected with F. oxysporum f.sp. melonis were included in compost piles. Studies were conducted in several compost windrows subjected to different treatments. Results showed an effective suppression of persistence and infective capacity, as this process caused complete fungal elimination after 2-3 days of composting. In order to confirm the effect of high temperature during this process, in vitro experiments were carried out. Temperature values of 45, 55 and 65 degrees C were tested. All three treatments caused the elimination of fungal persistence. Treatment at 65 degrees C was especially effective, whereas 45 degrees C eliminated fungal persistence only after 10 days. CONCLUSIONS: The composting process is an excellent alternative for the management of plant wastes after harvesting, as this procedure is able to suppress infective capacity of several harmful phytopathogens such as F. oxysporum f.sp. melonis. SIGNIFICANCE AND IMPACT OF THE STUDY: Fusarium oxysporum f.sp. melonis is a plant pathogen fungus specially important in the province of Almería (south-east Spain), where intensive greenhouse horticulture is very extended. High temperatures reached during composting of horticultural plant wastes ensure the elimination of phytopathogen microorganisms such as F. oxysporum f.sp. melonis from vegetable material, providing an adequate hygienic quality in composts obtained.  相似文献   

12.
13.
Abe H  Shimma Y  Jigami Y 《Glycobiology》2003,13(2):87-95
A glycosyltransferase was fused to the yeast cell wall protein Pir, which forms the Pir1-4 protein family and is incorporated into the cell wall by an unknown linkage to be displayed at the yeast cell surface. We first expressed the PIR1-HA-gma12+ fusion, in which gma12+ encodes alpha-1,2-galactosyltransferase from the fission yeast Schizosaccharomyces pombe under the Saccharomyces cerevisiae GAPDH promoter. The alpha-1,2-galactosyltransferase activity was detected at the surface of the intact cells that produce Pir1-HA-Gma12 fusion. To further demonstrate sequential oligosaccharide synthesis, two plasmids containing PIR1-HA-KRE2 and PIR2-FLAG-MNN1 fusion genes were constructed in which KRE2 and MNN1 encode alpha-1,2-mannosyltransferase and alpha-1,3-mannosyltransferase from S. cerevisiae, respectively. The intact yeast cells transformed with these two plasmids added mannoses initially with an alpha-1,2 linkage and subsequently with an alpha-1,3 linkage to the alpha-1,2-mannobiose acceptor in the presence of a GDP-mannose donor, demonstrating that Pir1 and Pir2 can be used as anchors to simultaneously immobilize several glycosyltransferases at the yeast cell surface. Based on the high acceptor specificity of glycosyltransferases, we propose a simple in vitro method for oligosaccharide synthesis using the yeast intact cell as a biocatalyst.  相似文献   

14.
Soil streptomycetes are commonly antagonistic against plant pathogens. However, interactions involving increased defense responses in the host plant, leading to suppression of plant disease development, have not yet been detailed. Here, the mechanisms were studied of disease suppression by Streptomyces sp. GB 4-2 against Heterobasidion root and butt rot in Norway spruce (Picea abies) seedlings. GB 4-2 promoted mycelial growth of the phytopathogenic fungus, germination rate of fungal spores, extension of germ tubes and early colonization of outer cortical layers of the plant root. Reduced colonization of the inner cortical cell layers was accompanied by the induction of cell wall appositions, and increased xylem formation in the vascular cylinder emerged after bacterium-fungus coinoculation. Bacterial treatment led to decreased water content in roots and needles and increased photosynthetic yield (F(v)/F(m)) and peroxidase activities in needles. The infection of needles by Botrytis cinerea was reduced by bacterial pretreatment. Complex interactions of GB 4-2 with Norway spruce and Heterobasidion abietinum were discovered. The bacterium promoted the growth of the phytopathogenic fungus but induced plant defense responses. Host responses indicate that GB 4-2 induces both local and systemic defense responses in Norway spruce.  相似文献   

15.
16.
Ito S  Eto T  Tanaka S  Yamauchi N  Takahara H  Ikeda T 《FEBS letters》2004,571(1-3):31-34
Many fungal pathogens of tomato produce extracellular enzymes, collectively known as tomatinases, that detoxify the preformed antifungal steroidal glycoalkaloid alpha-tomatine. Tomatinase from the vascular wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici cleaves alpha-tomatine into the aglycon tomatidine (Td) and the tetrasaccharide lycotetraose (Lt). Although modes of action of alpha-tomatine have been extensively studied, those of Td and Lt are poorly understood. Here, we show that both Td and Lt inhibit the oxidative burst and hypersensitive cell death in suspension-cultured tomato cells. A tomatinase-negative F. oxysporum strain inherently non-pathogenic on tomato was able to infect tomato cuttings when either Td or Lt was present. These results suggest that tomatinase from F. oxysporum is required not only for detoxification of alpha-tomatine but also for suppression of induced defense responses of host.  相似文献   

17.
The fungal species Fusarium oxysporum is a ubiquitous inhabitant of soils worldwide that includes pathogenic as well as non-pathogenic or even beneficial strains. Pathogenic strains are characterized by a high degree of host specificity and strains that infect the same host range are organized in so-called formae speciales. Strains for which no host plant has been identified are believed to be non-pathogenic strains. Therefore, identification below the species level is highly desired. However, the genetic basis of host specificity and virulence in F. oxysporum is so far unknown. In this study, a robust random-amplified polymorphic DNA (RAPD) marker-based assay was developed to specifically detect and identify the economically important cucumber pathogens F. oxysporum f. sp. cucumerinum and F. oxysporum f. sp. radicis-cucumerinum. While the F. oxysporum radicis-cucumerinum strains were found to cluster in a separate clade based on elongation factor-1alpha phylogeny, strains belonging to F. oxysporum f. sp. cucumerinum were found to be genetically more diverse. This is reflected in the observation that specificity testing of the identified markers using a broad collection of F. oxysporum strains with all known vegetative compatibility groups of the target formae speciales, as well as representative strains belonging to other formae speciales, resulted in two cross-reactions for the F. oxysporum f. sp. cucumerimum marker. However, no cross-reactions were observed for the F. oxysporum f. sp. radicis-cucumerimum marker. This F. oxysporum f. sp. radicis-cucumerimum marker shows homology to Folyt1, a transposable element identified in the tomato pathogen F. oxysporum f. sp. lycopersici and may possibly play a role in host-range specificity in the target forma specialis. The markers were implemented in a DNA array that enabled parallel and sensitive detection and identification of the pathogens in complex samples from diverse origins.  相似文献   

18.
Li L  Zhang C  Xu D  Schläppi M  Xu ZQ 《Gene》2012,506(1):50-61
EARLI1 is an Arabidopsis gene with pleiotropic effects previously shown to have auxiliary functions in protecting plants against freezing-induced cellular damage and promoting germinability under low-temperature and salinity stresses. Here we determined whether recombinant EARLI1 protein has anti-fungal activity. Recombinant EARLI1 protein lacking its signal peptide was produced in Escherichia coli BL21(DE3) using isopropyl β-d-1-thiogalactopyranoside (IPTG) induction and the prokaryotic expression vector pET28a. Expression of EARLI1 was analyzed by Western blotting and the protein was purified using affinity chromatography. Recombinant EARLI1 protein was applied to fungal cultures of Saccharomyces cerevisiae, Botrytis cinerea and Fusarium oxysporum, and membrane permeability was determined using SYTOX green. Full-length EARLI1 was expressed in S. cerevisiae from the GAL1 promoter using 2% galactose and yeast cell viability was compared to control cells. Our results indicated that application of recombinant EARLI1 protein to B. cinerea and F. oxysporum could inhibit the growth of the necrotrophic fungi. Besides, addition of the recombinant protein to liquid cultures of S. cerevisiae significantly suppressed yeast growth and cell viability by increasing membrane permeability, and in vivo expression of the secreted form of EARLI1 in S. cerevisiae also had a remarkable inhibition effect on the growth of yeast cells.  相似文献   

19.
20.
Inoue I  Namiki F  Tsuge T 《The Plant cell》2002,14(8):1869-1883
The soil-borne fungus Fusarium oxysporum causes vascular wilts of a wide variety of plant species by directly penetrating roots and colonizing the vascular tissue. The pathogenicity mutant B60 of the melon wilt pathogen F. oxysporum f. sp. melonis was isolated previously by restriction enzyme-mediated DNA integration mutagenesis. Molecular analysis of B60 identified the affected gene, designated FOW1, which encodes a protein with strong similarity to mitochondrial carrier proteins of yeast. Although the FOW1 insertional mutant and gene-targeted mutants showed normal growth and conidiation in culture, they showed markedly reduced virulence as a result of a defect in the ability to colonize the plant tissue. Mitochondrial import of Fow1 was verified using strains expressing the Fow1-green fluorescent protein fusion proteins. The FOW1-targeted mutants of the tomato wilt pathogen F. oxysporum f. sp. lycopersici also showed reduced virulence. These data strongly suggest that FOW1 encodes a mitochondrial carrier protein that is required specifically for colonization in the plant tissue by F. oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号