首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular senescence has long been used as a cellular model for understanding mechanisms underlying the ageing process. Compelling evidence obtained in recent years demonstrate that DNA damage is a common mediator for both replicative senescence, which is triggered by telomere shortening, and premature cellular senescence induced by various stressors such as oncogenic stress and oxidative stress. Extensive observations suggest that DNA damage accumulates with age and that this may be due to an increase in production of reactive oxygen species (ROS) and a decline in DNA repair capacity with age. Mutation or disrupted expression of genes that increase DNA damage often result in premature ageing. In contrast, interventions that enhance resistance to oxidative stress and attenuate DNA damage contribute towards longevity. This evidence suggests that genomic instability plays a causative role in the ageing process. However, conflicting findings exist which indicate that ROS production and oxidative damage levels of macromolecules including DNA do not always correlate with lifespan in model animals. Here we review the recent advances in addressing the role of DNA damage in cellular senescence and organismal ageing.  相似文献   

2.
Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production in primary human fibroblasts, thereby extending their replicative lifespan when added to the medium during long-term cultivation. Based on this finding, NAM is hypothesized to affect cellular senescence progression by keeping ROS accumulation low. In the current study, we asked whether NAM is indeed able to reduce ROS levels and senescence phenotypes in cells undergoing senescence progression and those already in senescence. We employed two different cellular models: MCF-7 cells undergoing senescence progression and human fibroblasts in a state of replicative senescence. In both models, NAM treatment substantially decreased ROS levels. In addition, NAM attenuated the expression of the assessed senescence phenotypes, excluding irreversible growth arrest. N-acetyl cysteine, a potent ROS scavenger, did not have comparable effects in the tested cell types. These data show that NAM has potent antioxidative as well as anti-senescent effects. Moreover, these findings suggest that NAM can reduce cellular deterioration caused by oxidative damage in postmitotic cells in vivo.  相似文献   

3.
Cancer cell migration and invasion are the initial steps in metastasis. Through a series of cellular events, including cytoskeletal remodeling resulting in phenotype changes and degradation of the extracellular matrix, cells are able to detach from the primary tumor and metastasize to distant sites. These changes occur in response to intracellular signaling mechanisms triggered via cell surface receptor stimulation or signal amplification within the cell. Amongst the active molecules that participate in relaying cellular signals are the reactive oxygen species (ROS). Initially identified to participate in defense mechanisms to ward off invading pathogens, ROS are now considered to have important roles in several other biological processes including cancer development. In this report, we review recent evidence pointing towards the involvement of ROS in tumor progression. We discuss the biology of ROS and their roles at different stages during the process of cancer cell migration and invasion.  相似文献   

4.
Reactive oxygen species (ROS) can cause severe damage to DNA, proteins and lipids in normal cells, contributing to carcinogenesis and various pathological conditions. While cellular senescence arrests the early phase of cell cycle without any detectable telomere loss or dysfunction. ROS is reported to contribute to induction of cellular senescence, as evidence by its premature onset upon treatment with antioxidants or inhibitors of cellular oxidant scavengers. Although cellular senescence is known to be implicated in tumor suppression, it remains unknown whether ROS initially contributed to be cellular senescence in normal human epidermal keratinocytes (NHEK) and their malignant counterparts. To clarify whether ROS induce cellular senescence in NHEKs, we examined the effect of hydrogen peroxide (H2O2) on the expression of cellular senescence-associated molecules in NHEKs, compared to in squamous carcinoma cells (SCCs). Hydrogen peroxide increased the number of cells positive in senescence associated-β-galactosidase (SA-β-Gal) activity in NHEKs, but not SCCs. The expression of cyclin-dependent kinase (CDK) inhibitors, especially p16INK4a was upregulated in NHEKs treated with H2O2. Interestingly, H2O2 suppressed the methylation of p16INK4a, promoter region in NHEKs, but not in SCCs. Hydrogen peroxide also suppressed the expression of phosphorylated Rb and CDK4, resulting in arrest in G0/G1 phase in NHEKs, but not SCCs.  相似文献   

5.
Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53‐induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53‐induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53‐induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H‐Ras‐induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt‐dependent NF‐κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53‐mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence‐associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt.  相似文献   

6.
Cigarette smoke (CS)-induced mitochondrial damage with increased reactive oxygen species (ROS) production has been implicated in COPD pathogenesis by accelerating senescence. Mitophagy may play a pivotal role for removal of CS-induced damaged mitochondria, and the PINK1 (PTEN-induced putative kinase 1)-PARK2 pathway has been proposed as a crucial mechanism for mitophagic degradation. Therefore, we sought to investigate to determine if PINK1-PARK2-mediated mitophagy is involved in the regulation of CS extract (CSE)-induced cell senescence and in COPD pathogenesis. Mitochondrial damage, ROS production, and cell senescence were evaluated in primary human bronchial epithelial cells (HBEC). Mitophagy was assessed in BEAS-2B cells stably expressing EGFP-LC3B, using confocal microscopy to measure colocalization between TOMM20-stained mitochondria and EGFP-LC3B dots as a representation of autophagosome formation. To elucidate the involvement of PINK1 and PARK2 in mitophagy, knockdown and overexpression experiments were performed. PINK1 and PARK2 protein levels in lungs from patients were evaluated by means of lung homogenate and immunohistochemistry. We demonstrated that CSE-induced mitochondrial damage was accompanied by increased ROS production and HBEC senescence. CSE-induced mitophagy was inhibited by PINK1 and PARK2 knockdown, resulting in enhanced mitochondrial ROS production and cellular senescence in HBEC. Evaluation of protein levels demonstrated decreased PARK2 in COPD lungs compared with non-COPD lungs. These results suggest that PINK1-PARK2 pathway-mediated mitophagy plays a key regulatory role in CSE-induced mitochondrial ROS production and cellular senescence in HBEC. Reduced PARK2 expression levels in COPD lung suggest that insufficient mitophagy is a part of the pathogenic sequence of COPD.  相似文献   

7.
Cellular senescence is the ultimate and irreversible loss of replicative capacity occurring in primary somatic cell culture. It is triggered as a stereotypic response to unrepaired nuclear DNA damage or to uncapped telomeres. In addition to a direct role of nuclear DNA double-strand breaks as inducer of a DNA damage response, two more subtle types of DNA damage induced by physiological levels of reactive oxygen species (ROS) can have a significant impact on cellular senescence: Firstly, it has been established that telomere shortening, which is the major contributor to telomere uncapping, is stress dependent and largely caused by a telomere-specific DNA single-strand break repair inefficiency. Secondly, mitochondrial DNA (mtDNA) damage is closely interrelated with mitochondrial ROS production, and this might also play a causal role for cellular senescence. Improvement of mitochondrial function results in less telomeric damage and slower telomere shortening, while telomere-dependent growth arrest is associated with increased mitochondrial dysfunction. Moreover, telomerase, the enzyme complex that is known to re-elongate shortened telomeres, also appears to have functions independent of telomeres that protect against oxidative stress. Together, these data suggest a self-amplifying cycle between mitochondrial and telomeric DNA damage during cellular senescence.  相似文献   

8.
Oxygen free radicals have a major impact on senescence of primary human cells. In replicative senescence, which is induced by uncapping of telomeres, the rate of telomere shortening is largely determined by telomere-specific accumulation of DNA damage induced by reactive oxygen species (ROS). More intense ROS-generating stressors can induce premature senescence via generation of telomere-independent DNA damage. Interestingly, ROS levels were also elevated when premature senescence was triggered by pathways downstream or independent of DNA damage. This has led to the suggestion that ROS generation could be a specific component of the signalling pathways inducing senescence. However, the available data are compatible with the concept that senescence is triggered as a DNA damage response. ROS appear to be involved as inducers of DNA damage rather than as specific signalling molecules. The upregulation of ROS production often seen in premature senescence might be related to retrograde response initiated by mitochondria.  相似文献   

9.
In the past, investigators have successfully used iron chelators to mitigate the cardiotoxicity of doxorubicin (DOX), a widely used anticancer drug that induces reactive oxygen species (ROS), oxidative damage, and apoptosis. Although intracellular iron plays a critical role in initiating DOX-induced apoptosis, the molecular mechanism(s) that link iron, ROS, and apoptosis are still unknown. In this study, we demonstrate that apoptosis results from the exposure of bovine aortic endothelial cells to DOX and that the apoptotic cell death is accompanied by a significant increase in cellular iron ((55)Fe) uptake and activation of iron regulatory protein-1. Furthermore, DOX-induced iron uptake was shown to be mediated by the transferrin receptor (TfR)-dependent mechanism. Treatment with the anti-TfR antibody (IgA class) dramatically inhibited DOX-induced apoptosis, iron uptake, and intracellular oxidant formation as measured by fluorescence using dichlorodihydrofluorescein. Treatment with cell-permeable iron chelators and ROS scavengers inhibited DOX-induced cellular (55)Fe uptake, ROS formation, and apoptosis. Based on these findings, we conclude that DOX-induced iron signaling is regulated by the cell surface TfR expression, intracellular oxidant levels, and iron regulatory proteins. The implications of TfR-dependent iron transport in oxidant-induced apoptosis in endothelial cells are discussed.  相似文献   

10.
Cells are continuously exposed to reactive oxygen species (ROS) generated by aerobic metabolism. Excessively generated ROS causes severe dysfunctions to cells as oxidative stress. On the other hand, there is increasing evidence that ROS plays important roles as a signaling intermediate that induces a wide variety of cellular responses such as proliferation, differentiation, senescence, and apoptosis. To transmit physiological ROS-mediated signals and to adapt to oxidative stress, cells are equipped with various intracellular signal transduction systems, represented by mitogen-activated protein kinase (MAPK) cascades. Apoptosis signal-regulating kinase 1 (ASK1) is an upstream regulator of the stress-activated MAPK cascades and has been shown to play critical roles in ROS-mediated cellular responses. Here, we highlight the roles of members of the ASK family, which consists of ASK1 and newly characterized ASK2, in ROS signaling with their possible involvement in human diseases.  相似文献   

11.
Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.  相似文献   

12.
Aging refers to the physical and functional decline of the tissues over time that often leads to age-related degenerative diseases. Accumulating evidence implicates that the senescence of neural stem cells (NSCs) is of paramount importance to the aging of central neural system (CNS). However, exploration of the underlying molecular mechanisms has been hindered by the lack of proper aging models to allow the mechanistic examination within a reasonable time window. In the present study, we have utilized a hydroxyurea (HU) treatment protocol and effectively induced postnatal subventricle NSCs to undergo cellular senescence as determined by augmented senescence-associated-β-galactosidase (SA-β-gal) staining, decreased proliferation and differentiation capacity, increased G0/G1 cell cycle arrest, elevated reactive oxygen species (ROS) level and diminished apoptosis. These phenotypic changes were accompanied by a significant increase in p16, p21 and p53 expression, as well as a decreased expression of key proteins in various DNA repair pathways such as xrcc2, xrcc3 and ku70. Further proteomic analysis suggests that multiple pathways are involved in the HU-induced NSC senescence, including genes related to DNA damage and repair, mitochondrial dysfunction and the increase of ROS level. Intriguingly, compensatory mechanisms may have also been initiated to interfere with apoptotic signaling pathways and to minimize the cell death by downregulating Bcl2-associated X protein (BAX) expression. Taken together, we have successfully established a cellular model that will be of broad utilities to the molecular exploration of NSC senescence and aging.  相似文献   

13.
Fremyella diplosiphon alters the phycobiliprotein composition of its light-harvesting complexes, i.e., phycobilisomes, and its cellular morphology in response to changes in the prevalent wavelengths of light in the external environment in a phenomenon known as complementary chromatic acclimation (CCA). The organism primarily responds to red light (RL) and green light (GL) during CCA to maximize light absorption for supporting optimal photosynthetic efficiency. Recently, we found that RL-characteristic spherical cell morphology is associated with higher levels of reactive oxygen species (ROS) compared to growth under GL where lower ROS levels and rectangular cell shape are observed. The RL-dependent association of increased ROS levels with cellular morphology was demonstrated by treating cells with a ROS-scavenging antioxidant which resulted in the observation of GL-characteristic rectangular morphology under RL. To gain additional insights into the involvement of ROS in impacting cellular morphology changes during CCA, we conducted experiments to study the temporal dynamics of changes in ROS levels and cellular morphology during transition to growth under RL or GL. Alterations in ROS levels and cell morphology were found to be correlated with each other at early stages of acclimation of low white light-grown cells to growth under high RL or cells transitioned between growth in RL and GL. These results provide further general evidence that significant RL-dependent increases in ROS levels are temporally correlated with changes in morphology toward spherical. Future studies will explore the light-dependent mechanisms by which ROS levels may be regulated and the direct impacts of ROS on the observed morphology changes.  相似文献   

14.
Many studies have suggested that there is a close correlation among declines in internal ascorbic acid (AsA) levels, various disorders, and senescence. To clarify the relationships between age-associated changes in intracellular AsA levels and the effects of AsA administration on intracellular reactive oxygen species (ROS) levels, we investigated aging-related changes in AsA uptake, ROS levels, and the effects of AsA administration on intracellular ROS levels in young and old (senescent) human fibroblasts. Our results demonstrated that AsA uptake was increased in old cells compared with young cells, although mRNA and protein expression of sodium-dependent vitamin C transporter 2 was barely altered between the young and old cells. We also demonstrated that the intracellular superoxide anion level was higher in young cells, whereas the level of intracellular peroxides was significantly increased in old cells under both normal and oxidative stress conditions. Moreover, AsA administration markedly decreased the augmentation of intracellular peroxides in old cells, whereas there was no effect of AsA treatment in young cells under both normal and oxidative stress conditions. Therefore, our results also indicate that AsA could play an important role in regulating the intracellular ROS levels in senescent cells and that the need for AsA is enhanced by cellular senescence.  相似文献   

15.
Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-XL protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them.  相似文献   

16.
Cellular senescence is a process that results from a variety of stresses, leading to a state of irreversible growth arrest. Senescent cells accumulate during aging and have been implicated in promoting a variety of age‐related diseases. Mitochondrial stress is an effective inducer of cellular senescence, but the mechanisms by which mitochondria regulate permanent cell growth arrest are largely unexplored. Here, we review some of the mitochondrial signaling pathways that participate in establishing cellular senescence. We discuss the role of mitochondrial reactive oxygen species (ROS), mitochondrial dynamics (fission and fusion), the electron transport chain (ETC), bioenergetic balance, redox state, metabolic signature, and calcium homeostasis in controlling cellular growth arrest. We emphasize that multiple mitochondrial signaling pathways, besides mitochondrial ROS, can induce cellular senescence. Together, these pathways provide a broader perspective for studying the contribution of mitochondrial stress to aging, linking mitochondrial dysfunction and aging through the process of cellular senescence.  相似文献   

17.
Neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, are characterized by several pathological features, including selective neuronal loss, aggregation of specific proteins, and chronic inflammation. Aging is the most critical risk factor of these disorders. However, the mechanism by which aging contributes to the pathogenesis of neurodegenerative diseases is not clearly understood. Cellular senescence is a cell state or fate in response to stimuli. It is typically associated with a series of changes in cellular phenotypes such as abnormal cellular metabolism and proteostasis, reactive oxygen species (ROS) production, and increased secretion of certain molecules via senescence-associated secretory phenotype (SASP). In this review, we discuss how cellular senescence contributes to brain aging and neurodegenerative diseases, and the relationship between protein aggregation and cellular senescence. Finally, we discuss the potential of senescence modifiers and senolytics in the treatment of neurodegenerative diseases.  相似文献   

18.
Aging involves the time-dependent deterioration of physiological functions attributed to various intracellular and extracellular factors. Cellular senescence is akin to aging and involves alteration in redox homeostasis. This is primarily marked by increased reactive oxygen/nitrogen species (ROS/RNS), inflammatory gene expression, and senescence-associated beta-galactosidase activity, all hallmarks of aging. It is proposed that gasotransmitters which include hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), may affect redox homeostasis during senescence. H2S has been independently shown to induce DNA damage and suppress oxidative stress. While an increase in NO levels during aging is well established, the role of H2S has remained controversial. To understand the role of H2S during aging, we evaluated H2S homeostasis in non-senescent and senescent cells, using a combination of direct measurements with a fluorescent reporter dye (WSP-5) and protein sulfhydration analysis. The free intracellular H2S and total protein sulfhydration levels are high during senescence, concomitant to cystathionine gamma-lyase (CSE) expression induction. Using lentiviral shRNA-mediated expression knockdown, we identified that H2S contributed by CSE alters global gene expression, which regulates key inflammatory processes during cellular senescence. We propose that H2S decreases inflammation during cellular senescence by reducing phosphorylation of IκBα and the p65 subunit of nuclear factor kappa B (NF-κB). H2S was also found to reduce NO levels, a significant source of nitrosative stress during cellular senescence. Overall, we establish H2S as a key gasotransmitter molecule that regulates inflammatory phenotype and nitrosative stress during cellular senescence.  相似文献   

19.
The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2–4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2–4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.  相似文献   

20.
Persistent accumulation of DNA damage induced by reactive oxygen species (ROS) is proposed to be a major contributor toward the aging process. Furthermore, an increase in age-associated ROS is strongly correlated with aging in various species, including humans. Here we showed that the enforced expression of the ROS modulator 1 (Romo1) triggered premature senescence by ROS production, and this also contributed toward induction of DNA damage. Romo1-derived ROS was found to originate in the mitochondrial electron transport chain. Romo1 expression gradually increased in proportion to population doublings of IMR-90 human fibroblasts. An increase in ROS production in these cells with high population doubling was blocked by the Romo1 knockdown using Romo1 small interfering RNA. Romo1 knockdown also inhibited the progression of replicative senescence. Based on these results, we suggest that age-related ROS levels increase, and this contributes to replicative senescence, which is directly associated with Romo1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号