首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

2.
Little is known about cell-cycle checkpoint activation by oxidative stress in mammalian cells. The effects of hyperoxia on cell-cycle progression were investigated in asynchronous human T47D-H3 cells, which contain mutated p53 and fail to arrest at G1/S in response to DNA damage. Hyperoxic exposure (95% O2, 40–64 h) induced an S-phase arrest associated with acute inhibition of Cdk2 activity and DNA synthesis. In contrast, exit from G2/M was not inhibited in these cells. After 40 h of hyperoxia, these effects were partially reversible during recovery under normoxic conditions. The inhibition of Cdk2 activity was not due to degradation of Cdk2, cyclin E or A, nor impairment of Cdk2 complex formation with cyclin A or E and p21Cip1. The loss of Cdk2 activity occurred in the absence of induction and recruitment of cdk inhibitor p21Cip1 or p27Kip1 in cyclin A/Cdk2 or cyclin E/Cdk2 complexes. In contrast, Cdk2 inhibition was associated with increased Cdk2-Tyr15 phosphorylation, increased E2F-1 recruitment, and decreased PCNA contents in Cdk2 complexes. The latter results indicate a p21Cip1/p27Kip1-independent mechanism of S-phase checkpoint activation in the hyperoxic T47D cell model investigated.  相似文献   

3.
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.  相似文献   

4.
We examined age-related changes in the expression of transforming growth factor-β1 (TGF-β1) and transforming growth factor-β2 in mouse testes. The mice were assigned to three age groups: 35, 50, and 75 days old. Paraffin embedded testis sections were processed for the standard streptavidin biotin peroxidase complex immunohistochemistry method. TGF-β1 expression increased in aging round spermatids over the time studied. There was no expression in 35-day-old Leydig cells, whereas strong expression of TGF-β1 was observed in 50-day-old Leydig cells. Expression decreased in 75-day-old Leydig cells. TGF-β2 expression was weak in 35- and 50-day-old mouse spermatids, but expression was greater in 75-day-old elongated spermatids. In Leydig cells, TGF-β2 expression was strong in both 35- and 50-day-old mice, whereas the expression of TGF-β2 was less in 75-day-old Leydig cells. Our results suggest that TGF-β1 and TGF-β2 may play significant roles in testicular functions and germ cell development in mice.  相似文献   

5.
Cellular supply of dNTPs is essential in the DNA replication and repair processes. Here we investigated the regulation of thymidine kinase 1 (TK1) in response to DNA damage and found that genotoxic insults in tumor cells cause up-regulation and nuclear localization of TK1. During recovery from DNA damage, TK1 accumulates in p53-null cells due to a lack of mitotic proteolysis as these cells are arrested in the G2 phase by checkpoint activation. We show that in p53-proficient cells, p21 expression in response to DNA damage prohibits G1/S progression, resulting in a smaller G2 fraction and less TK1 accumulation. Thus, the p53 status of tumor cells affects the level of TK1 after DNA damage through differential cell cycle control. Furthermore, it was shown that in HCT-116 p53−/− cells, TK1 is dispensable for cell proliferation but crucial for dTTP supply during recovery from DNA damage, leading to better survival. Depletion of TK1 decreases the efficiency of DNA repair during recovery from DNA damage and generates more cell death. Altogether, our data suggest that more dTTP synthesis via TK1 take place after genotoxic insults in tumor cells, improving DNA repair during G2 arrest.  相似文献   

6.
Mimosine is an effective cell synchronization reagent used for arresting cells in late G1 phase. However, the mechanism underlying mimosine-induced G1 cell cycle arrest remains unclear. Using highly synchronous cell populations, we show here that mimosine blocks S phase entry through ATM activation. HeLa S3 cells are exposed to thymidine for 15 h, released for 9 h by washing out the thymidine, and subsequently treated with 1 mm mimosine for a further 15 h (thymidine → mimosine). In contrast to thymidine-induced S phase arrest, mimosine treatment synchronizes >90% of cells at the G1-S phase boundary by inhibiting the transition of the prereplication complex to the preinitiation complex. Mimosine treatment activates ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint signaling without inducing DNA damage. Inhibition of ATM activity is found to induce mimosine-arrested cells to enter S phase. In addition, ATM activation by mimosine treatment is mediated by reactive oxygen species (ROS). These results suggest that, upon mimosine treatment, ATM blocks S phase entry in response to ROS, which prevents replication fork stalling-induced DNA damage.  相似文献   

7.
Checkpoint kinases Chk1 and Chk2 are two key components in the DNA damage-activated checkpoint signaling pathways. To distinguish the roles of Chk1 and Chk2 in S and G2 checkpoints after DNA damage, derivatives of the human breast cancer cell line MDA-MB-231 were established that express short hairpin RNAs to selectively suppress Chk1 or Chk2 expression. DNA damage was induced with the topoisomerase I inhibitor SN38 which arrests cells in S or G2 phase depending on concentration. Depletion of Chk1 resulted in loss of S phase arrest upon incubation with SN38, but the cells still arrested in G2. Suppression of Chk2 had no impact on cell cycle arrest, while cells concurrently suppressed for both Chk1 and Chk2 still arrested primarily in G2 suggesting the presence of an alternate checkpoint regulator. One critical target for Chk1 is Cdc25A which is phosphorylated and degraded to prevent cell cycle progression. Cells arrested in G2 in the absence of Chk1/Chk2 still showed regulation of Cdc25A consistent with the action of an alternate kinase. One candidate for an alternate checkpoint kinase is MAPKAPK2 (MK2), yet this kinase was minimally activated by DNA damage and its inhibition did not facilitate either S or G2 progression. Furthermore, we were unable to substantiate the recent observation that the Chk1 inhibitor UCN-01 inhibits MK2. These results show that Chk1, but neither Chk2 nor MK2, is an important regulator of S phase arrest, and suggest that an additional kinase can contribute to the G2 arrest.  相似文献   

8.
We have recently shown that induction of the p53 tumour suppressor protein by the small-molecule RITA (reactivation of p53 and induction of tumour cell apoptosis; 2,5-bis(5-hydroxymethyl-2-thienyl)furan) inhibits hypoxia-inducible factor-1α and vascular endothelial growth factor expression in vivo and induces p53-dependent tumour cell apoptosis in normoxia and hypoxia. Here, we demonstrate that RITA activates the canonical ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related DNA damage response pathway. Interestingly, phosphorylation of checkpoint kinase (CHK)-1 induced in response to RITA was influenced by p53 status. We found that induction of p53, phosphorylated CHK-1 and γH2AX proteins was significantly increased in S-phase. Furthermore, we found that RITA stalled replication fork elongation, prolonged S-phase progression and induced DNA damage in p53 positive cells. Although CHK-1 knockdown did not significantly affect p53-dependent DNA damage or apoptosis induced by RITA, it did block the ability for DNA integrity to be maintained during the immediate response to RITA. These data reveal the existence of a novel p53-dependent S-phase DNA maintenance checkpoint involving CHK-1.  相似文献   

9.
10.
Apamin is an integral part of bee venom, as a peptide component. It has long been known as a highly selective block Ca2+-activated K+ (SK) channels. However, the cellular mechanism and anti-fibrotic effect of apamin in TGF-β1-induced hepatocytes have not been explored. In the present study, we investigated the anti-fibrosis or anti-EMT mechanism by examining the effect of apamin on TGF-β1-induced hepatocytes. AML12 cells were seeded at ∼60% confluence in complete growth medium. Twenty-four hours later, the cells were changed to serum free medium containing the indicated concentrations of apamin. After 30 min, the cells were treated with 2 ng/ml of TGF-β1 and co-cultured for 48 h. Also, we investigated the effects of apamin on the CCl4-induced liver fibrosis animal model. Treatment of AML12 cells with 2 ng/ml of TGF-β1 resulted in loss of E-cadherin protein at the cell–cell junctions and concomitant increased expression of vimentin. In addition, phosphorylation levels of ERK1/2, Akt, Smad2/3 and Smad4 were increased by TGF-β1 stimulation. However, cells treated concurrently with TGF-β1 and apamin retained high levels of localized expression of E-cadherin and showed no increase in vimentin. Specifically, treatment with 2 μg/ml of apamin almost completely blocked the phosphorylation of ERK1/2, Akt, Smad2/3 and Smad4 in AML12 cells. In addition, apamin exhibited prevention of pathological changes in the CCl4-injected animal models. These results demonstrate the potential of apamin for the prevention of EMT progression induced by TGF-β1 in vitro and CCl4-injected in vivo.  相似文献   

11.
12.
Ultraviolet A (UVA) radiation represents more than 90% of the UV spectrum reaching Earth's surface. Exposure to UV light, especially the UVA part, induces the formation of photoexcited states of cellular photosensitizers with subsequent generation of reactive oxygen species (ROS) leading to damages to membrane lipids, proteins and nucleic acids. Although UVA, unlike UVC and UVB, is poorly absorbed by DNA, it inhibits cell cycle progression, especially during S-phase. In the present study, we examined the role of the DNA damage checkpoint response in UVA-induced inhibition of DNA replication. We provide evidence that UVA delays S-phase in a dose dependent manner and that UVA-irradiated S-phase cells accumulate in G2/M. We show that upon UVA irradiation ATM-, ATR- and p38-dependent signalling pathways are activated, and that Chk1 phosphorylation is ATR/Hus1 dependent while Chk2 phosphorylation is ATM dependent. To assess for a role of these pathways in UVA-induced inhibition of DNA replication, we investigated (i) cell cycle progression of BrdU labelled S-phase cells by flow cytometry and (ii) incorporation of [methyl-(3)H]thymidine, as a marker of DNA replication, in ATM, ATR and p38 proficient and deficient cells. We demonstrate that none of these pathways is required to delay DNA replication in response to UVA, thus ruling out a role of the canonical S-phase checkpoint response in this process. On the contrary, scavenging of UVA-induced reactive oxygen species (ROS) by the antioxidant N-acetyl-l-cystein or depletion of vitamins during UVA exposure significantly restores DNA synthesis. We propose that inhibition of DNA replication is due to impaired replication fork progression, rather as a consequence of UVA-induced oxidative damage to protein than to DNA.  相似文献   

13.
14.
The cytotoxicity of camptothecin (CPT) is S phase specific and is associated with an inhibition of DNA replication. The relationship between CPT-induced inhibition of DNA replication and CPT cytotoxicity remains unclear. We previously reported that the CPT-induced inhibition reflects an activated S-phase (S) checkpoint response and that this response is mainly regulated by ATR/CHK1 pathway. In this study, by comparing A1-5 and B4, the two transformed rat embryo fibroblasts cell lines, we showed that with higher CHK1 expression, A1-5 cells had a stronger S checkpoint response and were more resistant to CPT-treatment. The data suggested that over-activated CHK1 in CPT-treated A1-5 cells regulated the strong S checkpoint response through the CDC25A/CDK2 pathway. When the CHK-1 regulated strong S checkpoint response was abolished, A1-5 cells became much more sensitive to CPT-induced killing. These data indicated that CHK1 regulated S checkpoint response protected cells from CPT-induced killing.

Key Words:

CHK1, S-phase checkpoint, Camptothecin, DNA damage  相似文献   

15.
Large T antigen (TAg) of the human polyomavirus JC virus (JCV) possesses DNA binding and helicase activities, which, together with various cellular proteins, are required for replication of the viral genome. We now show that JCV-infected cells expressing TAg accumulate in the G2 phase of the cell cycle as a result of the activation of ATM- and ATR-mediated G2 checkpoint pathways. Transient transfection of cells with a TAg expression vector also induced G2 checkpoint signaling and G2 arrest. Analysis of TAg mutants with different subnuclear localizations suggested that the association of TAg with cellular DNA contributes to the induction of G2 arrest. Abrogation of G2 arrest by inhibition of ATM and ATR, Chk1, and Wee1 suppressed JCV genome replication. In addition, abrogation of the G2-M transition by Cdc2 depletion disabled Wee1 depletion-induced suppression of JCV genome replication, suggesting that JCV replication is facilitated by G2 arrest resulting from G2 checkpoint signaling. Moreover, inhibition of ATM and ATR by caffeine suppressed JCV production. The observation that oligodendrocytes productively infected with JCV in vivo also undergo G2 arrest suggests that G2 checkpoint inhibitors such as caffeine are potential therapeutic agents for JCV infection.  相似文献   

16.
Ubiquitin mediated degradation of cyclin D1 following the G1/S transition counters its mitogen-dependent accumulation during G1 phase of the cell cycle. Although the cellular machinery responsible for this process has been identified, how this regulatory pathway interfaces to cellular stress responses, often referred to as checkpoints, remains to be established. One intensely investigated checkpoint is the cellular response to DNA damage. When DNA damage is sensed, the corresponding DNA damage checkpoint triggers the inhibition of CDK-dependent cell cycle progression, with arrest coordinated by induction of CDK inhibitors and rapid degradation of specific cyclins, such as cyclin D1. In recent work, we identified a phosphorylation- and Fbx4-dependent cyclin D1 degradation mechanism in response to genotoxic stress.18 This work revealed that loss of cyclin D1 regulation compromises the intra-S-phase response to DNA damage, promoting genomic instability and sensitization of cells to S-phase chemotherapy, highlighting a potential therapeutic strategy for cancers exhibiting cyclin D1 accumulation.  相似文献   

17.
The presence of transforming growth factor β1 (TGF-β1) for 24 or 48 h stimulated DNA synthesis, the percentage of cells in the S + G2/M phases of the cell cycle, and cell number, as compared to quiescent cells. The mitogenic capacity of TGF-β1 (1 pM) was similar to that shown by 10% fetal calf serum (FCS). TGF-β1 for 48 h increased by 5-fold the percentage of cells containing (3H)thymidine-labeled nuclei as compared to quiescent cells. In addition, single fetal brown adipocytes, showing their typical multilocular fat droplets phenotype, become positive for (3H)thymidine-labeled nuclei in response to TGF-β1. Moreover, TGF-β1 induced the mRNA expression of a complete set of proliferation-related genes, such as c-fos (30 min), c-myc and β-actin (2 h), and H-ras, cdc2 kinase, and glucose 6-phosphate dehydrogenase (G6PD) at 4 and 8 h, as compared to quiescent cells. Concurrently, TGF-β1 for 12 h increased the protein content of proliferating cellular nuclear antigen (PCNA) by 6-fold and p21-ras by 2-fold. Although our results demonstrate that TGF-β1 induces the expression of very early genes related to cell proliferation, TGF-β1 could be acting either as a mitogen or as a survival factor to induce proliferation in fetal brown adipocytes. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Cell cycle arrests in the G(1), S, and G(2) phases occur in mammalian cells after ionizing irradiation and appear to protect cells from permanent genetic damage and transformation. Though Brca1 clearly participates in cellular responses to ionizing radiation (IR), conflicting conclusions have been drawn about whether Brca1 plays a direct role in cell cycle checkpoints. Normal Nbs1 function is required for the IR-induced S-phase checkpoint, but whether Nbs1 has a definitive role in the G(2)/M checkpoint has not been established. Here we show that Atm and Brca1 are required for both the S-phase and G(2) arrests induced by ionizing irradiation while Nbs1 is required only for the S-phase arrest. We also found that mutation of serine 1423 in Brca1, a target for phosphorylation by Atm, abolished the ability of Brca1 to mediate the G(2)/M checkpoint but did not affect its S-phase function. These results clarify the checkpoint roles for each of these three gene products, demonstrate that control of cell cycle arrests must now be included among the important functions of Brca1 in cellular responses to DNA damage, and suggest that Atm phosphorylation of Brca1 is required for the G(2)/M checkpoint.  相似文献   

19.
20.
There is a strong evidence that administration of antitumor drugs triggers apoptotic death of target cells. A characteristic feature of appotosis is active participation of the affected cell in its demise. Attempts have been made, therefore, to potentiate the cytotoxicity of a variety of agents by modulating the propensity of cells to respond by apoptosis. Several strategies to enhance apoptosis that involve modulation of the cell cycle or differentiation are discussed. Loss of control of the G1 checkpoint in tumor cells allows one to design treatments that arrest normal cells at the checkpoint and attempt to selectively kill tumor cells with S phase specific drugs. The possibility of a restoration of the apoptosis triggering function of the tumor suppressor gene p53 when the G1 checkpoint function is abolished is expected to increase tumor cells' sensitivity to S phase poisons. Because induction of apoptosis by many antitumor drugs is cell cycle phase specific, drug combinations that preferentially trigger apoptosis at different phases of the cycle, or recruitment of cells to the sensitive phase, offer another antitumor strategy. There is also evidence that apoptosis is potentiated when cell differentiation is triggered follwing DNA damage. This observation suggests that strategies which combine DNA damaging and differentiating drugs, under conditions where the latter are administered following DNA damage caused by the former, may be successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号