首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of vanadate on ethylene biosynthesis in detached rice leaves was investigated. Vanadate at pH 5.0–7.0 effectively enhanced ethylene production within 3 h of its application. It promoted the conversion of ACC to ethylene. Treatment with vanadate did not decrease ACC level until late stage of incubation, i.e. at 12 h after incubation. Molybdate, an inhibitor of phosphatase had no or much less stimulatory effect on ethylene production than did vanadate at comparable concentrations. Azide, an inhibitor of F1-ATPase, inhibited ethylene production in detached rice leaves. FC and vanadate were observed to be synergisticly increased ethylene production in detached rice leaves. In conclusion, plasma membrane H+-ATPase does not seem to be involved in ethylene biosynthesis in detached rice leaves.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - FC Fusicoccin  相似文献   

2.
The effects of polyamines (putrescine, spermidine, spermineand diaminopropane) on the production of ethylene in detachedrice leaves were investigated. Polyamines effectively promotedthe production of ethylene in detached rice leaves under bothlight and dark conditions. Putrescine stimulated the productionof ethylene within 4 hours of its application, a result suggeststhat putrescine enhances the production of ethylene directly.Putrescine also stimulated the production of ethylene in detachedleaves that had been aged for 2 and 4 days. The stimulatoryeffect of putrescine resulted from the enhancement of the synthesisof 1-aminocyclopropane-l-carboxylic acid (ACC) and the conversionof ACC to ethylene. The activity of S-adenosylmethio-nine decarboxylasein segments of rice leaves was inhibited by the applicationof putrescine. Thus, the enhancement of the synthesis of ACCby putrescine seems to be mediated by increases in the activityof ACC synthase and in the level of the substrate (S-adenosylmethionine)for ACC synthase. (Received February 27, 1991; Accepted June 5, 1991)  相似文献   

3.
The role of ethylene in jasmonate-promoted senescence of detached rice leaves was investigated. Ethylene production in methyl jasmonate-treated leaf segments of rice was lower than in the control leaves. Treatment of leaf segments with silver nitrate or/and silver thiosulfate, inhibitors of ethylene action, inhibited methyl jasmonate-, jasmonic acid-, linolenic acid-, and abscisic acid-promoted senescence of detached leaves. We suggest that an increase in ethylene sensitivity, but not ethylene level, is the initial event triggering the enhanced senescence by jasmonates of detached rice leaves.Abbreviations JA jasmonic acid - MJ methyl jasmonate - STS silver thiosulfate - ABA abscisic acid  相似文献   

4.
The effects of water stress and osmotic stress (sorbitol treatment) on the production of putrescine and proline in excised rice leaves were compared. Osmotic stress and water stress were found to affect differentially the levels of putrescine and proline in excised rice leaves. Putrescine accumulation is induced by osmotic stress, whereas proline accumulation is induced by water stress. The effects of ABA on the levels of proline and putrescine are similar to those of water stress, whereas the effects of jasmonic acid methyl ester (JA-Me) are similar to those of osmotic stress. Water stress results in an increase of endogenous ABA is excised rice leaves. However, neither osmotic stress nor JA-Me has effect on endogenous ABA levels in excised rice leaves. Of particular interest is the finding that proline levels increase when putrescine levels induced by osmotic stress or JA-Me are reduced by D-arginine and -methylornithine. L-arginine and L-ornithine applied exogenously also cause an increase in proline levels. It seems that L-arginine and L-ornithine are preferentially utilized as precursors for putrescine accumulation in excised rice leaves treated with osmotic stress and JA-Me, and for proline accumulation in excised rice leaves exposed to water stress and ABA.Abbreviations ABA abscisic acid - BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - HPLC high performance chromatography - JA-Me jasmonic acid methyl ester - PVP poly-vinylpyrrolidone  相似文献   

5.
The effects of copper on the activity of ascorbic acid oxidasc (AAO) in detached rice leaves under both light and dark conditions and in etiolated rice seedlings were investigated. CuSO4 increased AAO activity in detached rice leaves in both light and darkness, however, the induction in darkness was higher than in the light. In the absence of CuSO4, irradiance (40 μmol m-2 s-1) resulted in a higher activity of AAO in detached rice leaves than dark treatment. Both CuSO4 and CuCl2 increased AAO activity in detached rice leaves, indicating that AAO is activated by Cu. Sulfate salts of Mg, Mn, Zn and Fe were ineffective in activating AAO in detached leaves. CuSO4 was also observed to increase AAO activity in the roots but not in shoots of etiolated rice seedlings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Effects of metal chelators, 2,2-bipyridine, 8-hydroxyquinoline and 1,10-phenenthroline, on the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene in detached leaves of light-grown rice (Oryza sativa) seedlings and detached shoots of etiolated rice seedlings were investigated. Metal chelators strongly inhibited the in vivo ACC oxidase activity in detached leaves and detached etiolated shoots. This inhibition could be partially recovered by Fe2+. Our results support the notion that Fe2+ is an essential cofactor for the conversion of ACC to ethylene in vivo.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - BP 2,2-bypyridine - HQ 8-hydroxylquinoline - MJ methyl jasmonate - PA 1,10-phenanthroline - Put putrescine  相似文献   

7.
Ammonium accumulation is associated with senescence of rice leaves   总被引:6,自引:0,他引:6  
The relationship between ammonium accumulation and senescence of detached rice leaves was investigated. Ammonium accumulation in detached rice leaves coincided closely with dark-induced senescence. Exogenous NH4Cl and methionine sulfoximine, which caused an accumulation of ammonium in detached rice leaves, promoted senescence. Treatments such as light and benzyladenine, which retarded senescence, decreased ammonium level in detached rice leaves. Abscisic acid, which promoted senescence, increased ammonium level in detached rice leaves. The current results suggest that ammonium accumulation may be involved in regulating senescence. Evidence was presented to show that ammonium accumulated in detached rice leaves increases tissue sensitivity to ethylene. The accumulation of ammonium in detached rice leaves during dark-induced senescence is attributed to a decrease in glutamine synthetase activity and an increase in reduction of nitrate.  相似文献   

8.
Effects of compounds that influenced calcium uptake and calmodulininhibitors on the senescence of detached rice leaves were examined.Chelators, ethyleneglycol-bis-(ß-aminoethyl ether)-N,N,N',N'-tetraaceticacid (EGTA) and l,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraaceticacid (BAPTA), significantly promoted senescence of detachedrice leaves in the dark and light. The effect of EGTA can bereversed by treating detached rice leaves with calcium. Verapamil,a calcium channel blocker, and lanthanum chloride, a calciumantagonist, promoted dark-induced, and suppressed BA- and light-retardedsenescence of detached rice leaves. Calcium ionophore A23187 [GenBank] and ruthenium red, believed to raise cytosolic level of Ca2+,were quite effective in retarding dark-induced and ABA-promotedsenescence of detached rice leaves. Calmodulin inhibitors, W-7,compound 48/80, chlorpromazine and trifluoperazine, significantlypromoted dark-induced, and suppressed BA- and light-retardedsenescence of detached rice leaves. It is concluded that cytosoliclevel of Ca2+ may regulate senescence of detached rice leavesthrough a calmodulin-dependent mechanism. (Received June 13, 1990; Accepted August 3, 1990)  相似文献   

9.
The effects of salicylic acid (SA) on ethylene biosynthesis in detached rice leaves were investigated. SA at pH 3.5 effectively inhibited ethylene production within 2 h of its application. It inhibited the conversion of ACC to ethylene, but did not affect the levels of ACC and conjugated ACC. Thus, the inhibitory effect of SA resulted from the inhibition of both synthesis of ACC and the conversion of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - SA salicylic acid  相似文献   

10.
The role of hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced anthocyanin accumulation in detached and intact leaves of rice seedlings was investigated. Treatment with ABA resulted in an accumulation of anthocyanins in detached rice leaves. Dimethylthiourea, a chemical trap for H(2)O(2), was observed to be effective in inhibiting ABA-induced accumulation of anthocyanins. Inhibitors of NADPH oxidase (diphenyleneiodonium chloride and imidazole), phosphatidylinositol 3-kinase (wortmannin and LY 294002), and a donor of nitric oxide (N-tert-butyl-alpha-phenylnitrone), which have previously been shown to prevent ABA-induced H(2)O(2) accumulation in detached rice leaves, inhibited ABA-induced anthocyanin increase. Exogenous application of H(2)O(2), however, was found to increase the anthocyanin content of detached rice leaves. In terms of H(2)O(2) accumulation, intact (attached) leaves of rice seedlings of cultivar Taichung Native 1 (TN1) are ABA sensitive and those of cultivar Tainung 67 (TNG67) are ABA insensitive. Upon treatment with ABA, H(2)O(2) and anthocyanins accumulated in leaves of TN1 seedlings but not in leaves of TNG67. Our results, obtained from detached and intact leaves of rice seedlings, suggest that H(2)O(2) is involved in ABA-induced anthocyanin accumulation in this species.  相似文献   

11.
Ammonium ion accumulation in detached rice leaves treated with phosphinothricin (PPT), an inhibitior of glutamine synthetase (GS), was investigated in the light and darkness. PPT treatment increased NH4 + content and induced toxicity in rice leaves in the light but not in darkness, suggesting the importance of light in PPT-induced NH4 + toxicity in detached rice leaves. PPT treatment in the light resulted in a decrease of activities of the cytosolic form of GS and the chloroplastic form of GS. The photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea reduced NH4 + accumulation induced by PPT in the light. In darkness, PPT-induced NH4 + accumulation and toxicity were observed in the presence of glucose or sucrose.  相似文献   

12.
Ammonium accumulation in relation to prolineaccumulation in detached rice leaves under stressconditions was investigated. Ammonium accumulation indark-treated detached rice leaves preceded prolineaccumulation. Ammonium accumulation caused by waterstress coincided closely with proline accumulation indetached rice leaves. Exogenous NH4Cl andmethionine sulfoximine (MSO), which caused anaccumulation of ammonium in detached rice leaves,increased proline content. It was found that prolinein NH4Cl- or MSO-treated rice leaves is lessutilized than in water-treated rice leaves (controls). These results are in agreement with the observationthat a decrease in proline utilization contributes tothe accumulation of proline in dark-treated and waterstressed rice leaves. Although ammonium contentincreased in Cd- and Cu-treated rice leaves, theincrease in ammonium content was only observed afterthe increase in proline content.  相似文献   

13.
The role of proteolytic enzymes in protein degradation of detached and intact leaves of rice seedling ( Oryza sativa L. cv. Taiching Native 1) during senescence and of mature leaves during reproductive development was investigated. The amount of soluble protein decreased by about 50% in 2, 4, and 15 days for detached, intact and mature leaves, respectively. Three proteolytic enzyme activities were monitored with pH optima of 4.5 for hemoglobin-digesting proteinase, 5.5 for carboxypeptidase and 8.0 for aminopeptidase. No azocoll-digesting proteinase activity could be detected in rice leaves. Dialysis did not alter the activities of any of the three proteolytic enzymes. Acid proteinase activity and aminopeptidase activity were highly unstable during storage of the enzyme extracts at 4°C. Proteolysis was stimulated by inclusion of meroaptoethanal either in the extraction medium or the assay medium.
Acid proteinase, carboxypeptidase and aminopeptidase were all present in detached, intact and mature leaves throughout senescence. There seems to be a direct correlation between protein degradation and increases of acid proteinase and carboxypeptidase activity in seedling leaves (detached and intact) during senescence. In senescing (detached and intact) leaves of seedlings the acid proteinase activity developed first, while that of carboxypeptidase developed later. Acid proteinase and carboxypeptidase may play major roles in protein degradation of leaves from seedlings during senscence. During reproductive development, protein degradation was associated with decreases in the activities of acid proteinase, carboxypeptidase and aminopeptidase in mature leaves suggesting that the enzymes were less important for protein degradation in this system. Hence, the role of protelytic enzymes in protein degradation during senescence of rice leaves appears to depend largely on the leaf system used.  相似文献   

14.
Both abscisic acid (ABA) and jasmonates are known to promote leaf senescence. Since ABA and jasmonates have both chemical and physiological similarities, we are interested to know whether senescence of detached rice leaves induced by methyl jasmonate (MJ) is mediated through an increase in endogenous ABA levels. In darkness, the endogenous level of ABA in detached rice leaves remained unchanged in the first day of incubation in water and increased about 5 times its initial value in the second day. However, the pattern of senescence, as judged by protein loss, was rapid during the first day. MJ significantly promoted senescence of detached rice leaves. Contrary to our expectation, endogenous ABA levels decreased in MJ-treated detached rice leaves. Similar to the effect of MJ, endogenous ABA levels decreased in detached rice leaves which were induced to senesce by treatment with NH4Cl. These results suggest that endogenous ABA levels are not linked to MJ-induced senescence of detached rice leaves.  相似文献   

15.
Putrescine, spermidine and spermine were found in leaves and inflorescences of H. angiospermum and H. indicum plants; the levels of these amines declined with leaf age. In addition, homospermidine was identified in the inflorescence axes and youngest leaves of H. indicum. The youngest tissues exhibited the highest levels of both putrescine and pyrrolizidine alkaloids. The detection of homospermidine in the plants supports the theory that the pyrrolizidine moiety is derived from two molecules of putrescine with homospermidine as an intermediate. In the youngest organs, the pyrrolizidines represented over 5% of the total nitrogen content. Their level was 50–100 fold higher than that of the polyamines, including putrescine. When detached and kept in the dark for 100–120 hr, mature older Heliotropium leaves, with a very low polyamine content, exhibited only a weak senescence syndrome. By contrast, in detached, darkened leaves of Avena sativa and Nicotiana alata having high polyamine levels, the chlorophyll and protein degradation and increases in free amino acids were very pronounced.  相似文献   

16.
The effects of water stress on the contents of proline, ornithine, arginine and glutamic acid in detached rice leaves were examined. In water stressed leaves, the content of proline was elevated to a content approximately 8-, 14- and 17-fold higher than in control leaves after 4, 8 and 12 h, respectively. We also observed that omithine and arginine contents were much higher under water stress than in control leaves. However, the content of glutamic acid in water stressed leaves was higher after 4 and 8 h and lower after 12 h than that in control leaves.  相似文献   

17.
The effects of abscisic acid and isobutyric acid on levels ofproline in detached rice leaves were compared. The lowest concentrationof abscisic acid that induces accumulation of proline in detachedrice leaves was much lower than that of isobutyric acid. Theaccumulation of porline induced by isobutyric acid was associatedwith acidification of the cell sap, whereas abscisic acid increasedlevels of proline without decreasing the pH of the cell sap.Potassium chloride enhanced the accumulation of proline thatwas induced by abscisic acid, but it did not stimulate thatinduced by isobutyric acid. Of particular interest is the findingthat detached rice leaves treated with fusicoccin showed anincrease in levels of proline and a decrease in the pH of thecell sap. A synergistic increase in levels of proline was observedwhen fusicoccin and abscisic acid applied simultaneously. However,fusicoccin had no effect on the induction of the accumulationof pro-line by isobutyric acid. Benzyladenine inhibited theinduction by abscisic acid of the accumulation of proline, butit did not inhibit the induction by isobutyric acid. It is concludedthat the mode of action of abscisic acid in inducing the accumulationof proline differs from that of isobutyric acid. Our resultsalso indicate that factors other than acidification of the cellsap are involved in regulation of the accumulation of proline. (Received September 25, 1990; Accepted December 20, 1990)  相似文献   

18.
Paraquat toxicity is reduced by polyamines in rice leaves   总被引:2,自引:0,他引:2  
The protective effect of polyamines against paraquat (PQ) toxicity of rice (Oryza sativa) leaves was investigated. PQ treatment resulted in a higher putrescine (PUT) and lower spermidine (SPD) and spermine (SPM) levels in rice leaves. Pretreatment with SPD and SPM, which resulted in a 10- and 20-fold increase in endogenous level of SPD and SPM, respectively, reduced PQ toxicity (30%). Limited reduction of PQ toxicity by exogenous SPD and SPM is most likely due to the fact that they are not readily transported in rice leaf cells and localized to those areas along the cut edges of detached rice leaves [4]. PUT pretreatment did not increase endogenous SPD and SPM levels and had no effect on reducing PQ toxicity. It was found that 1,10-phenanthroline, an iron chelator, treatment reduced the toxicity of PQ (35%) and increased the levels of SPD (27%). The results indicate that reduction of PQ toxicity by SPD and SPM is due to increased activities of catalase (18%) and peroxidase (40%).  相似文献   

19.
Wang CY  Cheng SH  Kao CH 《Plant physiology》1982,69(6):1348-1349
Proline content increased greatly in detached rice (Oryza sativa cv. Taichung Native 1) leaves during senescence. There was a slight but significant increase in proline level after one day of incubation, and, subsequently, proline accumulated relatively rapidly. By 4 days after excision, the level of proline had increased 30- to 50-fold, which is similar to the level seen in the water-stressed detached rice leaves. It is unlikely that the proline accumulation in detached leaves is to be derived solely from protein hydrolysis, since the addition of l-glutamic acid increased the proline level during senescence. The proline analog, 3,4-dehydroproline, did not affect the level of proline during senescence. It seems that accumulation of proline may, at least in part, result from an increased rate of synthesis, possibly due to a disruption of the normal feedback inhibition of proline synthesis. Potassium cyanide and 2,4-dinitrophenol strongly inhibited proline accumulation, indicating that some energy compound(s) may participate in proline accumulation during senescence of excised rice leaves.  相似文献   

20.
Cytokinins and Ca2+ singly retarded senescence of detached rice leaves. When Ca2+ was applied together with cytokinins, the effectiveness of cytokinins was significantly reduced. Ca2+ and cytokinins did not stimulate ethylene production synergistically, ruling out the possibility that ethylene was involved in the inhibition of cytokinin-induced senescence- retarding effect by Ca2+. The experiment with specific compounds known to increase (Ca ionophore A23187), or decrease (EGTA, LaCl3, Verapamil, chlorpromazine) cytosolic Ca2+ level indicated that the elevated cytosolic Ca2+ retards senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号