首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The activities of l-serine dehydratase and l-serine–pyruvate aminotransferase were determined in rat liver during foetal and neonatal development. 2. l-Serine–pyruvate aminotransferase activity begins to develop in late-foetal liver, increases rapidly at birth to a peak during suckling and then decreases at weaning to the adult value. 3. l-Serine dehydratase activity is very low prenatally, but increases rapidly after birth to a transient peak. After a second transient peak around the time weaning begins, activity gradually rises to the adult value. Both of these peaks have similar isoenzyme compositions. 4. In foetal liver both l-serine dehydratase and l-serine–pyruvate aminotransferase activities are increased after injection in utero of glucagon or dibutyryl cyclic AMP. Cycloheximide or actinomycin D inhibited the prenatal induction of both enzymes and actinomycin D blocked the natural increase of l-serine dehydratase immediately after birth. Glucose or insulin administration also blocked the perinatal increase of l-serine dehydratase. 5. After the first perinatal peak of l-serine dehydratase, activity is increased by cortisol and this is inhibited by actinomycin D. After the second postnatal peak, activity is increased by amino acids or cortisol and this is insensitive to actinomycin D inhibition. Glucose administration blocks the cortisol-stimulated increase in l-serine dehydratase and also partially lowers the second postnatal peak of activity. 6. The developmental patterns of the enzymes are discussed in relation to the pathways of gluconeogenesis from l-serine. The regulation of enzyme activity by hormonal and dietary factors is discussed with reference to the changes in stimuli that occur during neonatal development and to their possible mechanisms of action.  相似文献   

2.
Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes l-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S l-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of l-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C1 units and interferes with cell wall synthesis. We suggest that at high concentrations, l-serine decreases synthesis of UDP-N-acetylmuramate-l-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high l-serine is overcome in several ways: by a large concentration of l-alanine, by overproducing MurC together with a low concentration of l-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.The Escherichia coli genome contains three genes, sdaA, sdaB, and tdcG, specifying three very similar 4Fe4S l-serine deaminases. These enzymes are very specific for l-serine for which they have unusually high Km values (3, 32). Expression of the three genes is regulated so that at least one of the gene products is synthesized under all common growth conditions (25). This suggests an important physiological role for the enzymes. However, why E. coli needs to deaminate l-serine has been a long-standing problem of E. coli physiology, the more so since it cannot use l-serine as the sole carbon source.We showed recently that an E. coli strain devoid of all three l-serine deaminases (l-SDs) loses control over its size, shape, and cell division when faced with complex amino acid mixtures containing l-serine (32). We attributed this to starvation for single-carbon (C1) units and/or S-adenosylmethionine (SAM). C1 units are usually made from serine via serine hydroxymethyl transferase (GlyA) or via glycine cleavage (GCV). The l-SD-deficient triple mutant strain is starved for C1 in the presence of amino acids, because externally provided glycine inhibits GlyA and a very high internal l-serine concentration along with several other amino acids inhibits glycine cleavage. While the parent cell can defend itself by reducing the l-serine level by deamination, this crucial reaction is missing in the ΔsdaA ΔsdaB ΔtdcG triple mutant. We therefore consider these to be “defensive” serine deaminases.The fact that an inability to deaminate l-serine leads to a high concentration of l-serine and inhibition of GlyA is not surprising. However, it is not obvious why a high level of l-serine inhibits cell division and causes swelling, lysis, and filamentation. Serine toxicity due to inhibition of biosynthesis of isoleucine (11) and aromatic amino acids (21) has been reported but is not relevant here, since these amino acids are provided in Casamino Acids.We show here that at high internal concentrations, l-serine also causes problems with peptidoglycan synthesis, thus weakening the cell wall. Peptidoglycan is a polymer of long glycan chains made up of alternating N-acetylglucosamine and N-acetylmuramic acid residues, cross-linked by l-alanyl-γ-d-glutamyl-meso-diaminopimelyl-d-alanine tetrapeptides (1, 28). The glucosamine and muramate residues and the pentapeptide (from which the tetrapeptide is derived) are all synthesized in the cytoplasm and then are exported to be polymerized into extracellular peptidoglycan (2).In this paper, we show that lysis is caused by l-serine interfering with the first step of synthesis of the cross-linking peptide, the addition of l-alanine to uridine diphosphate-N-acetylmuramate. This interference is probably due to a competition between serine and l-alanine for the ligase, MurC, which adds the first l-alanine to UDP-N-acetylmuramate (7, 10, 15). As described here, the weakening of the cell wall by l-serine can be overcome by a variety of methods that reduce the endogenous l-serine pool or counteract the effects of high levels of l-serine.  相似文献   

3.
l-Serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize l-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external l-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking d-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of l-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in l-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external l-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with l-serine but was potentiated by increasing the ratio of l-alanine to l-serine in the medium. Unlike with l-serine, depriving cells of external l-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, l-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of l-alanine to l-serine in cells and tissues lacking Phgdh, and de novo synthesis of l-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited.  相似文献   

4.
d-Serine is a physiological activator of NMDA receptors (NMDARs) in the nervous system that mediates several NMDAR-mediated processes ranging from normal neurotransmission to neurodegeneration. d-Serine is synthesized from l-serine by serine racemase (SR), a brain-enriched enzyme. However, little is known about the regulation of d-serine synthesis. We now demonstrate that the F-box only protein 22 (FBXO22) interacts with SR and is required for optimal d-serine synthesis in cells. Although FBXO22 is classically associated with the ubiquitin system and is recruited to the Skip1-Cul1-F-box E3 complex, SR interacts preferentially with free FBXO22 species. In vivo ubiquitination and SR half-life determination indicate that FBXO22 does not target SR to the proteasome system. FBXO22 primarily affects SR subcellular localization and seems to increase d-serine synthesis by preventing the association of SR to intracellular membranes. Our data highlight an atypical role of FBXO22 in enhancing d-serine synthesis that is unrelated to its classical effects as a component of the ubiquitin-proteasome degradation pathway.  相似文献   

5.
The serP1 and serP2 genes found adjacently on the chromosome of Lactococcus lactis strains encode two members of the amino acid-polyamine-organocation (APC) superfamily of secondary transporters that share 61% sequence identity. SerP1 transports l-serine, l-threonine, and l-cysteine with high affinity. Affinity constants (Km) are in the 20 to 40 μM range. SerP2 is a dl-alanine/dl-serine/glycine transporter. The preferred substrate appears to be dl-alanine for which the affinities were found to be 38 and 20 μM for the d and l isomers, respectively. The common substrate l-serine is a high-affinity substrate of SerP1 and a low-affinity substrate of SerP2 with affinity constants of 18 and 356 μM, respectively. Growth experiments demonstrate that SerP1 is the main l-serine transporter responsible for optimal growth in media containing free amino acids as the sole source of amino acids. SerP2 is able to replace SerP1 in this role only in medium lacking the high-affinity substrates l-alanine and glycine. SerP2 plays an adverse role for the cell by being solely responsible for the uptake of toxic d-serine. The main function of SerP2 is in cell wall biosynthesis through the uptake of d-alanine, an essential precursor in peptidoglycan synthesis. SerP2 has overlapping substrate specificity and shares 42% sequence identity with CycA of Escherichia coli, a transporter whose involvement in peptidoglycan synthesis is well established. No evidence was obtained for a role of SerP1 and SerP2 in the excretion of excess amino acids during growth of L. lactis on protein/peptide-rich media.  相似文献   

6.
The analysis of the urine contents can be informative of physiological homoeostasis, and it has been speculated that the levels of urinary d-serine (d-ser) could inform about neurological and renal disorders. By analysing the levels of urinary d-ser using a d-ser dehydratase (DSD) enzyme, Ito et al. (Biosci. Rep.(2021) 41, BSR20210260) have described abundant levels of l-erythro-β-hydroxyasparagine (l-β-EHAsn), a non-proteogenic amino acid which is also a newly described substrate for DSD. The data presented support the endogenous production l-β-EHAsn, with its concentration significantly correlating with the concentration of creatinine in urine. Taken together, these results could raise speculations that l-β-EHAsn might have unexplored important biological roles. It has been demonstrated that l-β-EHAsn also inhibits serine racemase with Ki values (40 μM) similar to its concentration in urine (50 μM). Given that serine racemase is the enzyme involved in the synthesis of d-ser, and l-β-EHAsn is also a substrate for DSD, further investigations could verify if this amino acid would be involved in the metabolic regulation of pathways involving d-ser.  相似文献   

7.
Mazelis M  Liu ES 《Plant physiology》1967,42(12):1763-1768
Serine transhydroxymethylase (EC 2.1.2.1) has been purified 46-fold from cauliflower (Brassica oleracea var. botrytis L.). The enzyme was completely dependent on the presence of tetrahydrofolic acid for the conversion of serine to glycine. The addition of pyridoxal phosphate gave a large increase in the reaction rate. A double pH optimum was observed with maxima at 7.5 and 9.5. The enzyme is specific for l-serine. The d-isomer is neither a substrate nor an inhibitor. The Michaelis constants for l-serine, tetrahydrofolic acid, and pyridoxal phosphate were 300 μm, 760 μm, and 24 μm, respectively. The addition of K+ also stimulated the reaction rate considerably. The effect was quite specific since all other metal ions tested either had very little: influence or were extremely inhibitory.  相似文献   

8.
The senescence of oat leaves has been studied by following the loss of chlorophyll and protein and the increase of α-amino nitrogen, after detachment and darkening. Protein synthesis and the amounts of proteolytic enzymes in the leaves have been determined directly. The process of senescence is shown to be a sequential one in which protein synthesis,most probably the formation of a proteolytic enzyme with l-serine in its active center, is of prime importance. The evidence is as follows. Firstly, l-serine specifically enhances senescence, especially in presence of kinetin. Secondly, cycloheximide, which inhibits protein synthesis in other systems, delays senescence and prevents the serine enhancement. Although requiring higher concentrations, cycloheximide can be as effective as kinetin in inhibiting senescence. It is shown directly that cycloheximide prevents protein synthesis in oat leaves under the same conditions as when it prevents senescence. Thirdly, leaves have been shown to contain two proteinases, with pH optima at 3 and 7.5, whose activity increases during senescence, even though the total leaf protein is decreasing. The amounts of both these enzymes present after 3 days are clearly increased by serine, and are greatly decreased by cycloheximide or by kinetin. The role of kinetin in delaying senescence thus may rest on its ability to suppress protease formation.  相似文献   

9.
1. The route of l-threonine degradation was studied in four strains of the genus Pseudomonas able to grow on the amino acid and selected because of their high l-threonine aldolase activity. Growth and manometric results were consistent with the cleavage of l-threonine to acetaldehyde+glycine and their metabolism via acetate and serine respectively. 2. l-Threonine aldolases in these bacteria exhibited pH optima in the range 8.0–8.7 and Km values for the substrate of 5–10mm. Extracts exhibited comparable allo-l-threonine aldolase activities, Km values for this substrate being 14.5–38.5mm depending on the bacterium. Both activities were essentially constitutive. Similar activity ratios in extracts, independent of growth conditions, suggested a single enzyme. The isolate Pseudomonas D2 (N.C.I.B. 11097) represents the best source of the enzyme known. 3. Extracts of all the l-threonine-grown pseudomonads also possessed a CoA-independent aldehyde dehydrogenase, the synthesis of which was induced, and a reversible alcohol dehydrogenase. The high acetaldehyde reductase activity of most extracts possibly resulted in the underestimation of acetaldehyde dehydrogenase. 4. l-Serine dehydratase formation was induced by growth on l-threonine or acetate+glycine. Constitutively synthesized l-serine hydroxymethyltransferase was detected in extracts of Pseudomonas strains D2 and F10. The enzyme could not be detected in strains A1 and N3, probably because of a highly active `formaldehyde-utilizing' system. 5. Ion-exchange and molecular exclusion chromatography supported other evidence that l-threonine aldolase and allo-l-threonine aldolase activities were catalysed by the same enzyme but that l-serine hydroxymethyltransferase was distinct and different. These results contrast with the specificities of some analogous enzymes of mammalian origin.  相似文献   

10.
Quinto G 《Applied microbiology》1966,14(6):1022-1026
Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins.  相似文献   

11.
d-Serine is an endogenous coagonist for the N-methyl-d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5′-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of l-serine to yield d-serine and vice versa. The enzyme also catalyzes the dehydration of d- and l-serine. Both reactions are enhanced by Mg·ATP in vivo. We have determined the structures of the following three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe: the wild-type enzyme, the wild-type enzyme in the complex with an ATP analog, and the modified enzyme in the complex with serine at 1.7, 1.9, and 2.2 Å resolution, respectively. On binding of the substrate, the small domain rotates toward the large domain to close the active site. The ATP binding site was identified at the domain and the subunit interface. Computer graphics models of the wild-type enzyme complexed with l-serine and d-serine provided an insight into the catalytic mechanisms of both reactions. Lys-57 and Ser-82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique “lysino-d-alanyl” residue at the active site, also exhibits catalytic activities. The crystal-soaking experiment showed that the substrate serine was actually trapped in the active site of the modified enzyme, suggesting that the lysino-d-alanyl residue acts as a catalytic base in the same manner as inherent Lys-57 of the wild-type enzyme.d-Serine, which is present at a high level in the mammalian brain, serves as an endogenous coagonist for the N-methyl-d-aspartate (NMDA)5 receptor selectively localized on the postsynaptic membrane of the excitatory synapse (15) and is involved in excitatory neurotransmission and higher brain functions such as learning and memory (3, 6, 7). Stimulation of the NMDA receptor requires the binding of d-serine as well as the agonist l-glutamate. The major enzyme for d-serine synthesis from l-serine in the brain is considered to be pyridoxal 5′-phosphate (PLP)-dependent serine racemase (SR) (810). d-Serine and SR are localized on protoplasmic astrocytes that have the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor. Glutamate released from presynaptic neurons approaches and activates the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor, which in turn induces SR to produce d-serine and is followed by d-serine release from astrocytes that act on the NMDA receptor. Recently, it was shown that not only glia but also neurons synthesize and release d-serine involved in signaling (11). SR also catalyzes α,β-elimination of water from d- or l-serine to form pyruvate and ammonia as well as the conversion of l-serine into d-serine and vice versa and is presumed to link d-serine synthesis and energy metabolism of astrocytes (12) and to control the d-serine level (13). Mg·ATP, which is fully bound to SR under physiological conditions, stimulates racemization and the α,β-elimination reaction catalyzed by SR (12, 14).SR was first discovered in pupae of the silkworm Bombyx mori (15), which was followed by purification of the enzyme from a rat brain and cloning of the mouse and human genes (8, 9). The primary structure of mammalian SR is distinct from those of racemases from prokaryotes but is similar to those of fold-type II PLP-dependent enzymes (1618). We have cloned and expressed the Schizosaccharomyces pombe gene homologous to human and mouse SRs, the sequence identities being 35.1 and 37.4%, respectively, in Escherichia coli. The protein product is a bifunctional enzyme that catalyzes racemization and the α,β-elimination reaction of D, l-serine as mammalian SR does. SR from S. pombe (spSR) comprises 322 residues (the N-terminal Met is removed in the purified enzyme) and one PLP per subunit, the subunit molecular weight being 34,917. The mammalian SR homolog, spSR, is an interesting target enzyme for the development of a novel therapeutic compound controlling the d-serine level because d-serine is the product of an SR-catalyzed reaction. In our recent report, the active site of spSR was shown to be modified with its natural substrate serine by mass spectroscopic and x-ray studies (19). Interestingly, the catalytic lysine, which originally forms a Schiff base with PLP, is converted to a lysino-d-alanyl residue through the reaction with the substrate, serine (Fig. 1). The modified enzyme exhibits racemase (54% of the wild-type enzyme) and α,β-elimination (68% of the wild-type enzyme) activities with the amino group of the d-alanyl moiety of the lysinoalanyl residue forming a Schiff base with PLP in place of the lysine (19). In addition, the mammalian SR seems to be possibly modified to have a lysinoalanyl residue at the active site, as observed in spSR (20).Open in a separate windowFIGURE 1.Covalent modification of the active site. The catalytic Lys-57 in spSRw is converted to lysino-d-alanyl residue. The α-amino group (indicated with “α”) of the d-alanyl moiety in the residue acts as a catalytic base in spSRm. The circled P is a phosphate group.Although the structure of modified spSR (spSRm) has been determined (19), the structure-function relationship of essential wild-type spSR (spSRw), the binding mode of activator Mg·ATP, the catalytic base to shuttle protons to the substrate d-serine, and the substrate recognition of the modified enzyme have not yet been uncovered. We now report the three-dimensional structures of unliganded spSRw in the open form, spSRw·AMP-PCP in the open form, and spSRm·serine in the closed form.  相似文献   

12.
Previously, we successfully cloned a d-cycloserine (d-CS) biosynthetic gene cluster consisting of 10 open reading frames (designated dcsA to dcsJ) from d-CS-producing Streptomyces lavendulae ATCC 11924. In this study, we put four d-CS biosynthetic genes (dcsC, dcsD, dcsE, and dcsG) in tandem under the control of the T7 promoter in an Escherichia coli host. SDS-PAGE analysis demonstrated that the 4 gene products were simultaneously expressed in host cells. When l-serine and hydroxyurea (HU), the precursors of d-CS, were incubated together with the E. coli resting cell suspension, the cells produced significant amounts of d-CS (350 ± 20 μM). To increase the productivity of d-CS, the dcsJ gene, which might be responsible for the d-CS excretion, was connected downstream of the four genes. The E. coli resting cells harboring the five genes produced d-CS at 660 ± 31 μM. The dcsD gene product, DcsD, forms O-ureido-l-serine from O-acetyl-l-serine (OAS) and HU, which are intermediates in d-CS biosynthesis. DcsD also catalyzes the formation of l-cysteine from OAS and H2S. To repress the side catalytic activity of DcsD, the E. coli chromosomal cysJ and cysK genes, encoding the sulfite reductase α subunit and OAS sulfhydrylase, respectively, were disrupted. When resting cells of the double-knockout mutant harboring the four d-CS biosynthetic genes, together with dcsJ, were incubated with l-serine and HU, the d-CS production was 980 ± 57 μM, which is comparable to that of d-CS-producing S. lavendulae ATCC 11924 (930 ± 36 μM).  相似文献   

13.
Studies of l-Cysteine Biosynthetic Enzymes in Phaseolus vulgaris L   总被引:2,自引:2,他引:0  
Smith IK 《Plant physiology》1972,50(4):477-479
In higher plants the biosynthesis of l-cysteine from l-serine, acetylCoA, and sulfide requires serine transacetylase and O-acetylserine sulfhydrylase. The distribution of these enzymes in kidney bean (Phaseolus vulgaris L. cv. Red Kidney) seedlings was determined. Between one-third and two-thirds of the serine transacetylase activity was associated with mitochondria, whereas all of the O-acetyl-serine sulfhydrylase activity was present in the soluble fraction of cell homogenates. In a 14-day plant approximately two-thirds of the O-acetylserine sulfhydrylase activity and approximately one-half of the serine transacetylase activity was found in the leaves.  相似文献   

14.
The eukaryotic serine racemase from Dictyostelium discoideum is a fold-type II pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes racemization and dehydration of both isomers of serine. In the present study, the catalytic mechanism and role of the active site residues of the enzyme were examined by site-directed mutagenesis. Mutation of the PLP-binding lysine (K56) to alanine abolished both serine racemase and dehydrase activities. Incubation of d- and l-serine with the resultant mutant enzyme, K56A, resulted in the accumulation of PLP-serine external aldimine, while less amounts of pyruvate, α-aminoacrylate, antipodal serine and quinonoid intermediate were formed. An alanine mutation of Ser81 (S81) located on the opposite side of K56 against the PLP plane converted the enzyme from serine racemase to l-serine dehydrase; S81A showed no racemase activity and had significantly reduced d-serine dehydrase activity, but it completely retained its l-serine dehydrase activity. Water molecule(s) at the active site of the S81A mutant enzyme probably drove d-serine dehydration by abstracting the α-hydrogen in d-serine. Our data suggest that the abstraction and addition of α-hydrogen to l- and d-serine are conducted by K56 and S81 at the si- and re-sides, respectively, of PLP.  相似文献   

15.
The discovery of large amounts of d-serine in the brain challenged the dogma that only l-amino acids are relevant for eukaryotes. The levels of d-serine in the brain are higher than many l-amino acids and account for as much as one-third of l-serine levels. Several studies in the last decades have demonstrated a role of d-serine as an endogenous agonist of N-methyl-d-aspartate receptors (NMDARs). d-Serine is required for NMDAR activity during normal neurotransmission as well as NMDAR overactivation that takes place in neurodegenerative conditions. Still, there are many unanswered questions about d-serine neurobiology, including regulation of its synthesis, release and metabolism. Here, we review the mechanisms of d-serine synthesis by serine racemase and discuss the lessons we can learn from serine racemase knockout mice, focusing on the roles attributed to d-serine and its cellular origin.  相似文献   

16.
The effect of 0.5 millimolar O-acetyl-l-serine added to the nutrient solution on sulfate assimilation of Lemna minor L., cultivated in the light or in the dark, or transferred from light to the dark, was examined. During 24 hours after transfer from light to the dark the extractable activity of adenosine 5′-phosphosulfate sulfotransferase, a key enzyme of sulfate assimilation, decreased to 10% of the light control. Nitrate reductase (EC 1.7.7.1.) activity, measured for comparison, decreased to 40%. Adenosine 5′-triphosphate (ATP) sulfurylase (EC 2.7.7.4.) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8.) activities were not affected by the transfer. When O-acetyl-l-serine was added to the nutrient solution at the time of transfer to the dark, adenosine 5′-phosphosulfate sulfotransferase activity was still at 50% of the light control after 24 hours, ATP sulfurylase and O-acetyl-l-serine sulfhydrylase activity were again not affected, and nitrate reductase activity decreased as before. Addition of O-acetyl-l-serine at the time of the transfer caused a 100% increase in acid-soluble SH compounds after 24 hours in the dark. In continuous light the corresponding increase was 200%. During 24 hours after transfer to the dark the assimilation of 35SO42− into organic compounds decreased by 80% without O-acetyl-l-serine but was comparable to light controls in its presence. The addition of O-acetyl-l-serine to Lemna minor precultivated in the dark for 24 hours induced an increase in adenosine 5′-phosphosulfate sulfotransferase activity so that a constant level of 50% of the light control was reached after an additional 9 hours. Cycloheximide as well as 6-methyl-purine inhibited this effect. In the same type of experiment O-acetyl-l-serine induced a 100-fold increase in the incorporation of label from 35SO42− into cysteine after additional 24 hours in the dark. Taken together, these results show that exogenous O-acetyl-l-serine has a regulatory effect on assimilatory sulfate reduction of L. minor in light and darkness. They are in agreement with the idea that this compound is a limiting factor for sulfate assimilation and seem to be in contrast to the proposed strict light control of sulfate assimilation.  相似文献   

17.
d-Serine is a physiological co-agonist of the N-methyl-d-aspartate receptor. It regulates excitatory neurotransmission, which is important for higher brain functions in vertebrates. In mammalian brains, d-amino acid oxidase degrades d-serine. However, we have found recently that in chicken brains the oxidase is not expressed and instead a d-serine dehydratase degrades d-serine. The primary structure of the enzyme shows significant similarities to those of metal-activated d-threonine aldolases, which are fold-type III pyridoxal 5′-phosphate (PLP)-dependent enzymes, suggesting that it is a novel class of d-serine dehydratase. In the present study, we characterized the chicken enzyme biochemically and also by x-ray crystallography. The enzyme activity on d-serine decreased 20-fold by EDTA treatment and recovered nearly completely by the addition of Zn2+. None of the reaction products that would be expected from side reactions of the PLP-d-serine Schiff base were detected during the >6000 catalytic cycles of dehydration, indicating high reaction specificity. We have determined the first crystal structure of the d-serine dehydratase at 1.9 Å resolution. In the active site pocket, a zinc ion that coordinates His347 and Cys349 is located near the PLP-Lys45 Schiff base. A theoretical model of the enzyme-d-serine complex suggested that the hydroxyl group of d-serine directly coordinates the zinc ion, and that the ϵ-NH2 group of Lys45 is a short distance from the substrate Cα atom. The α-proton abstraction from d-serine by Lys45 and the elimination of the hydroxyl group seem to occur with the assistance of the zinc ion, resulting in the strict reaction specificity.  相似文献   

18.
Hart JW  Filner P 《Plant physiology》1969,44(9):1253-1259
The sulfur requirements of tobacco (Nicotiana tabacum L. var. Xanthi) XD cells grown in chemically defined liquid media can be satisfied by sulfate, thiosulfate, l-cyst(e)ine, l-methionine or glutathione, and somewhat less effectively by d-cyst (e) ine, d-methionine or dl-homocyst (e)ine. Sulfate uptake is inhibited after a 2 hr lag by l-cyst (e)ine, l-methionine, l-homocyst(e)ine or l-isoleucine, but not by any of the other protein amino acids, nor by d-cyst(e)ine. l-cyst(e)ine is neither a competitive nor a non-competitive inhibitor of sulfate uptake. Its action most closely resembles apparent uncompetitive inhibition. Inhibition of sulfate uptake by l-cyst(e)ine can be partially prevented by equimolar l-arginine, l-lysine, l-leucine, l-phenylalanine, l-tyrosine or l-tryptophan, but is little affected by any of the other protein amino acids. The effective amino acids are apparent competitive inhibitors of l-cyst(e)ine uptake after a 2 hr lag. Inhibition of sulfate uptake by l-methionine cannot be prevented, nor can uptake of l-methionine be inhibited by any single protein amino acid. The results suggest the occurrence of negative feedback control of sulfate assimilation by the end products, the sulfur amino acids, in cultured tobacco cells.  相似文献   

19.
When the first leaf of the oat (Avena sativa) seedling is detached and placed in the dark, yellowing and proteolysis take place rapidly. The earlier finding that d-serine promotes this process has led to a further study of the controlling roles of several amino acids. Since the action of serine was found to be more powerful in presence of kinetin than alone, the effects of other amino acids have been restudied in presence of kinetin. Cysteine emerges as a moderately strong promotor of senescence, with glycine and alanine having definite but weaker effects. The serine effect is antagonized by arginine, especially in presence of kinetin, and so is the cysteine effect. This is considered to indicate that these two amino acids act in the same way. The antagonism exerted by arginine is in turn antagonized by canavanine. The protease activities at two pH regions which increase in the oat leaf during senescence react to both p-chlorimercuri-phenylsulfonate and to phenylmethyl-sulfonyl fluoride, and thus may contain both SH and OH groups. The amounts of both these enzyme activities formed in the leaf during 3 days in the dark are increased over 50% by pretreatment with serine, and this increase is very largely prevented by arginine. The amounts of soluble proteins left in the leaf vary as expected in the opposite sense. It is deduced that control of the new formation of proteases plays an important part in senescence. A suggestion is made as to the mechanism of control of senescence in leaves.  相似文献   

20.
The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both l- and d-amino acids, with the general sequence d-Phe(P3)-Pro(P2)-d-Arg(P1)-P1′-CONH2. The P1′ position was scanned with l- and d-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1′ position. The lead tetrapeptide, d-Phe-Pro-d-Arg-d-Thr-CONH2, competitively inhibits α-thrombin''s cleavage of the S2238 chromogenic substrate with a Ki of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1′ l-isoleucine (fPrI), l-cysteine (fPrC) or d-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the d-Arg residue in position P1 and thrombin are similar to those observed for the l-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 d-Arg and a bulkier P1′ residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the d-stereochemistry of the residues at positions P1 and P1′.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号