首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fine structural analysis of fetal mouse ovaries reveals the presence of intercellular bridges between developing oocytes. These bridges, which connect two or more oocytes, are most frequently seen prior to the dictyate stage of meiotic prophase. The intercellular connections are limited by a tri-laminar membrane which is continuous with the oocyte plasmalemma. A characteristic feature of all bridges is the presence of an electron-dense material on the cytoplasmic side of the limiting membrane. Since this dense material is a constant and conspicuous component of the entire bridge, identification of these connections is possible in all planes of section. In cross section, the bridges are usually cylindrical, while in longitudinal section, a variety of configurations are observed. Oocytes connected by intercellular bridges exhibit a highly developed Golgi complex which is frequently localized in the region of the cytoplasmic continuities. Vesicular elements, apparently derived from the Golgi, are routinely observed within the boundaries of the bridges. Other cytoplasmic organelles, including rough and smooth endoplasmic reticulum, free ribosomes and mitochondria, are also seen in these bridges. The presence of these vesicles and organelles within intercellular bridges suggests that these connections may provide a means for transfer of organelles and other substances from one oocyte to another. It may be, therefore, that intercellular bridges are important for the nourishment and maturation of certain selected oocytes as well as for the synchronization of meiotic events.  相似文献   

2.
This study describes intercellular bridges in the ovaries of neonatal gerbils. Electron microscopy has revealed the presence of true intercellular bridges, connecting oogonia or oocytes, in ovaries of newborn gerbils. The cytoplasm of the intercellular channels is similar to that of the connected cells, with mitochondria, smooth and rough endoplasmic reticulum, and free ribosomes present. Lysosomes are also occasionally present in the intercellular bridges and they may be involved in early waves of oocyte atresia. An electron-dense substance, 350-500 A thick, is located immediately beneath the unit membrane of the intercellular bridges. Accumulation of electron-dense material increases the thickness of the walls of the intercellular bridges, supporting and maintaining the patency of the channels. It is suggested that the intercellular channels probably allow the interchange of nutrients, organelles, and possibly regulatory materials as well.  相似文献   

3.
Continental‐scale assembly of floras results from past and present in situ diversification in association with several external processes. Among these processes are the making and breaking of connections among landmasses. Connections among landmasses are constantly in flux as are the climates and landscapes along the connection corridors, so that these corridors, or land bridges, may either facilitate or restrict migration at a given time. Across land bridges, changing landscape‐level and organismal factors include the dispersal potential and vectors of propagules, competition, predation, and distributions altered by pathogens. Assembly of a flora is, therefore, the outcome of complex, interacting, temporally‐varying factors that render simplistic explanations unlikely. In the case of North America, the continent experienced ephemeral connections with adjacent regions via five land bridges over the last 100 Ma at different times and under different climates and specific landscape morphologies, including edaphic characteristics. Here, I emphasize the earliest of these connections, Beringia, which probably comprised an initially‐incomplete land bridge during the Cretaceous and Paleocene resulting from compression, fragmentation, and rotation of Asian‐North American sub‐blocks as North America began moving westward from the northern portion of the Mid‐Atlantic Ridge. During the same time, additional land was added to Beringia with accretion of terranes and the subduction of the northern edge of the Pacific Plate beneath the North American‐Asian Plates in the Eocene to form the Aleutian Islands. Other connections between North America and adjacent landmasses were the North Atlantic, the Antilles, Central America, and the Magellan land bridge.  相似文献   

4.
5.
A wide variety of intercellular junctions that are involved with cell adhesion or signal transduction have been described in recent years. A widespread but less well-characterized type of intercellular junction is the stable intercellular bridge. Several organisms use stable intercellular bridges as cytoplasmic connections, probably to allow rapid transfer of information and organelles between cells. Here, the authors take a detailed look at the assembly of intercellular bridges called ring canals in the Drosophila germline and discuss how examination of mutants that disrupt Drosophila ovarian ring canal assembly indicates that these bridges are required for intercellular transport of cytoplasm.  相似文献   

6.
Spermatozoa from three insect groups were examined by electron microscopy and found to have bridges that connect some of the axonemal doublets with either the two mitochondrial derivatives or, in the phasmids, the so-called laminated bodies. Within Hemiptera Heteroptera the bridges extend from doublet Nos. 1 and 5, within chrysopid neuropterans from doublet Nos. 2 and 5, and in the phasmids from axonemal doublet Nos. 2 and 4. Bridges were looked for in spermatozoa from several other insect groups but not found. The bridges in the chrysopids are regularly curved rather than straight. While bridges in heteropterans and chrysopids were seen in spermatozoa fixed with “standard fixatives,” those in the phasmids were distinctly resolved only in spermatozoa that had been fixed with a tannic acidcontaining fixative. In spite of these differences, it is conceivable that the bridges in these three insect taxa are all derived from similar, faint, bridge-like connections that sometimes can be seen to extend from all or many doublets toward the axonemal sheath of the early insect spermatid. These bridges or bridge-like structures might have a morphogenic function in that they may specify the location of the mitochondria later to become mitochondrial derivatives or, in the phasmids, of the laminated bodies.  相似文献   

7.
Summary During the premetamorphic development of coleopteran telotrophic ovaries the culsters of sister oogonial cells, in which the differentiation of nurse cells and oocytes occurs, are arranged in linear chains. This results from a series of mitoses with the consistent orientation of the spindle parallel to the long axis of the ovariole. As a result of incomplete cytokinesis, the oogonial cells in each sibling cluster are linked to each other by intercellular bridges occupied by fusomes. As a rule, at each cluster division the basal cell (i.e. the oocyte progenitor) starts to divide first. From this cell a wave of mitoses spreads toward the anterior end of the cluster, resulting in a mitotic gradient. It is suggested that the failure of the fusomes in adjacent cells to fuse into one continuous fusome (i.e. polyfusome) allows the spindles to orientate with their long axes parallel to the long axis of the sibling cluster. This would explain why the oogonial divisions in coleopteran telotrophic ovaries generate linear chains of cells rather than the cyst-like arrangement which is typical for polytrophic sibling clusters. Dividing sibling clusters within ovarioles are arranged in bundles. The presence of intercellular bridges between sibling clusters seems to be the underlying cause of this nonrandom distribution of the mitotically active clusters. The transverse bridges have been found to occur between the basal cells as well as between the cells located more anteriorly in adjacent sibling clusters. The transverse bridges are filled with typical fusomes, which in more anterior parts of sibling clusters may fuse with the fusomes of adjacent sister oogonial cells into polyfusomes. The transverse bridges between the basal cells are incorporated in the oocytes. The pattern of sibling cluster formation described in this paper apparently occurs widespread in polyphagous Coleoptera, since it has been found in three relatively distantly related families.  相似文献   

8.
The ovaries of early embryos (40 days post coitum/p.c.) of the bat Carollia perspicillata contain numerous germ-line cysts, which are composed of 10 to 12 sister germ cells (cystocytes). Variability in the number of cystocytes within the cyst and between the cysts (defying the Giardina rule) indicates that the mitotic divisions of the cystoblast are asynchronous in this bat species. Serial section analysis showed that the cystocytes are interconnected via intercellular bridges that are atypical, strongly elongated, short-lived, and rich in microtubule bundles and microfilaments. During slightly later stages of embryonic development (44-46 days p.c.), somatic cells penetrate the cyst, and their cytoplasmic projections separate individual oocytes. Separated oocytes surrounded by a single layer of somatic cells constitute the primordial ovarian follicles. The oocytes of C. perspicillata are similar to mouse oocytes and are asymmetric. In both species, this asymmetry is clearly recognizable in the localization of the Golgi complexes. The presence of germ-line cysts and intercellular bridges (although noncanonical) in the fetal ovaries of C. perspicillata suggest that the formation of germ-line cysts is an evolutionarily conserved phase in the development of the female gametes in a substantial part of the animal kingdom.  相似文献   

9.
Spermatogonia of the monkey, Macaca nemestrina, were studied with the electron microscope. The spermatogonial nucleus is characterized by dense homogeneous chromatin and an eccentric nucleolus with a prominent surrounding clear zone. Cytoplasm consists chiefly of free ribosomes and vesicular endoplasmic reticulum. Scattered mitochondria with closely spaced transverse cristae are arranged singly and in pairs separated by thin electron-dense bands. Binucleated spermatogonia resemble other spermatogonia in their ultrastructural characteristics, but contain an increased number of lysosome-like structures and degenerating mitochondria. Spermatogonial interconnections are of two types: broad cytoplasmic connections and narrow intercellular bridges. Connected cells are always identical in appearance and stage of maturation. Multiple connections occur. Interconnection of spermatogonia provides a syncytial type of arrangement which allows synchronization of differentiation and results in similar apperance of adjoining cells. Similarity of regressive changes in adjacent degenerating cells is explained by the presence of intercellular bridges.  相似文献   

10.
The ultrastructure of the ovaries and oogenesis was studied in three species of three genera of Tubificinae. The paired ovaries are small, conically shaped structures, connected to the intersegmental septum between segments X and XI by their narrow end. The ovaries are composed of syncytial cysts of germ cells interconnected by stable cytoplasmic bridges (ring canals) and surrounded by follicular cells. The architecture of the germ-line cysts is exactly the same as in all clitellate annelids studied to date, i.e. each cell in a cyst has only one ring canal connecting it to the central, anuclear cytoplasmic mass, the cytophore. The ovaries found in all of the species studied seem to be meroistic, i.e. the ultimate fate of germ cells within a cyst is different, and the majority of cells withdraw from meiosis and become nurse cells; the rest continue meiosis, gather macromolecules, cell organelles and storage material, and become oocytes. The ovaries are polarized; their narrow end contains mitotically dividing oogonia and germ cells entering the meiosis prophase; whereas within the middle and basal parts, nurse cells, a prominent cytophore and growing oocytes occur. During late previtellogenesis/early vitellogenesis, the oocytes detach from the cytophore and float in the coelom; they are usually enveloped by the peritoneal epithelium and associated with blood vessels. Generally, the organization of ovaries in all of the Tubificinae species studied resembles the polarized ovary cords found within the ovisacs of some Euhirudinea. The organization of ovaries and the course of oogenesis between the genera studied and other clitellate annelids are compared. Finally, it is suggested that germ-line cysts formation and the meroistic mode of oogenesis may be a primary character for all Clitellata.  相似文献   

11.
A previous electron microscopic study of the cat testis revealed that spermatids derived from the same spermatogonium are joined together by intercellular bridges. The present paper records the observation of similar connections between spermatocytes and between spermatids in Hydra, fruit-fly, opossum, pigeon, rat, hamster, guinea pig, rabbit, monkey, and man. In view of these findings, it is considered likely that a syncytial relationship within groups of developing male germ cells is of general occurrence and is probably responsible for their synchronous differentiation. When clusters of spermatids, freshly isolated from the germinal epithelium are observed by phase contrast microscopy, the constrictions between the cellular units of the syncytium disappear and the whole group coalesces into a spherical multinucleate mass. The significance of this observation in relation to the occurrence of abnormal spermatozoa in semen and the prevalence of multinucleate giant cells in pathological testes is discussed. In the ectoderm of Hydra, the clusters of cnidoblasts that arise from proliferation of interstitial cells are also connected by intercellular bridges. The development of nematocysts within these groups of conjoined cells is precisely synchronized. Both in the testis of vertebrates and the ectoderm of Hydra, a syncytium results from incomplete cytokinesis in the proliferation of relatively undifferentiated cells. The intercellular bridges between daughter cells are formed when the cleavage furrow encounters the spindle remnant and is arrested by it. The subsequent dissolution of the spindle filaments establishes free communication between the cells. The discovery of intercellular bridges in the two unrelated tissues discussed here suggests that a similar syncytial relationship may be found elsewhere in nature where groups of cells of common origin differentiate synchronously.  相似文献   

12.
A previous electron microscopic study of the cat testis revealed that spermatids derived from the same spermatogonium are joined together by intercellular bridges. The present paper records the observation of similar connections between spermatocytes and between spermatids in Hydra, fruit-fly, opossum, pigeon, rat, hamster, guinea pig, rabbit, monkey, and man. In view of these findings, it is considered likely that a syncytial relationship within groups of developing male germ cells is of general occurrence and is probably responsible for their synchronous differentiation. When clusters of spermatids, freshly isolated from the germinal epithelium are observed by phase contrast microscopy, the constrictions between the cellular units of the syncytium disappear and the whole group coalesces into a spherical multinucleate mass. The significance of this observation in relation to the occurrence of abnormal spermatozoa in semen and the prevalence of multinucleate giant cells in pathological testes is discussed. In the ectoderm of Hydra, the clusters of cnidoblasts that arise from proliferation of interstitial cells are also connected by intercellular bridges. The development of nematocysts within these groups of conjoined cells is precisely synchronized. Both in the testis of vertebrates and the ectoderm of Hydra, a syncytium results from incomplete cytokinesis in the proliferation of relatively undifferentiated cells. The intercellular bridges between daughter cells are formed when the cleavage furrow encounters the spindle remnant and is arrested by it. The subsequent dissolution of the spindle filaments establishes free communication between the cells. The discovery of intercellular bridges in the two unrelated tissues discussed here suggests that a similar syncytial relationship may be found elsewhere in nature where groups of cells of common origin differentiate synchronously.  相似文献   

13.
Germ cell cluster in the panoistic ovary of Thysanoptera (Insecta)   总被引:1,自引:1,他引:0  
M. Pritsch  J. Büning 《Zoomorphology》1989,108(5):309-313
Summary Germ cell clusters are found in the germarial region of ovarioles of Parthenothrips dracenae. Cluster mitoses are synchronized, at least initially. The intercellular bridges are filled with fusomal material, which can fuse to form polyfusomal aggregates which in turn form small rosettes. All cells develop into oocytes. Oocytes become isolated by a secondary detachment process. Intercellular bridges, together with fusomal material and cell membranes, survive for some time as isolated bodies. Phylogenetic consequences are discussed. The data provide strong evidence for a secondary panoistic ovary in thysanopterans, since cluster formation in ovaries of primary panoists has not been shown.  相似文献   

14.

Background

Biological processes from embryogenesis to tumorigenesis rely on the coordinated coalescence of cells and synchronized cell-to-cell communication. Intercellular signaling enables cell masses to communicate through endocrine pathways at a distance or by direct contact over shorter dimensions. Cellular bridges, the longest direct connections between cells, facilitate transfer of cellular signals and components over hundreds of microns in vitro and in vivo.

Methodology/Principal Findings

Using various cellular imaging techniques on human tissue cultures, we identified two types of tubular, bronchial epithelial (EP) connections, up to a millimeter in length, designated EP bridges. Structurally distinct from other cellular connections, the first type of EP bridge may mediate transport of cellular material between cells, while the second type of EP bridge is functionally distinct from all other cellular connections by mediating migration of epithelial cells between EP masses. Morphological and biochemical interactions with other cell types differentially regulated the nuclear factor-κB and cyclooxygenase inflammatory pathways, resulting in increased levels of inflammatory molecules that impeded EP bridge formation. Pharmacologic inhibition of these inflammatory pathways caused increased morphological and mobility changes stimulating the biogenesis of EP bridges, in part through the upregulation of reactive oxygen species pathways.

Conclusions/Significance

EP bridge formation appears to be a normal response of EP physiology in vitro, which is differentially inhibited by inflammatory cellular pathways depending upon the morphological and biochemical interactions between EP cells and other cell types. These tubular EP conduits may represent an ultra long-range form of direct intercellular communication and a completely new mechanism of tissue-mediated cell migration.  相似文献   

15.
SYNOPSIS. Electron-microscopic observations were performed on 2 species of Volvox , one similar to V. globator , the other to V. aureus. The former has distinct protoplasmic connections in the adult coenobium and specific structures, named "medial bodies," in the connections just at the intersection with the middle lamella. The medial body is disk shaped, about 800 mμ in diameter, and is composed of 3 parts, 2 dense outer layers and an intermediate less dense zone. In the latter species, the connection and medial body were not seen. On the other hand, it was commonly seen in both of them that in younger, dividing gonidia neighboring protoplasts were connected with each other by protoplasmic bridges. The bridges are undoubtedly formed due to incomplete cell separation in the division of a gonidium. The structural difference in the adult coen***bium between the 2 species emerges just after inversion of the coenobium. In the globator type the medial body appears just after inversion, and the connection remains unruptured all thru life. In the aureus type, it seems that the connections are withdrawn or degenerate immediately after inversion. It is discussed whether protoplasmic continuity is really maintained by the connection or not in the freeswimming coenobium of Volvox.  相似文献   

16.
The 2 ovaries of Nemoura sp. (Plecoptera : Nemouridae) are comb-like and house about 60–70 ovarioles each. By ultrathin serial sections through a whole ovariole of a last-larval instar, we gathered information on its ultrastructure and 3-dimensional architecture. The germarial region contains several clusters of interconnected oogonia or oocytes. The intercellular bridges (ring canals) are filled with fusomes. Most of the fusomes assemble to polyfusomes and some of the intercellular bridges move together and their cells assemble to rosettes. Results indicate that existence of polyfusomes is not sufficient for rosette formation. The oogonia or oocytes of each cluster develop synchronously. Oocytes detach from clusters next to intercellular bridges. A transdetermination of oogonia to nurse cells does not occur. Thus, the stone flies remain true panoists.  相似文献   

17.
Summary The ultrastructure of the intercellular bridges in the ovaries of Orectochilus villosus has been studied. In young egg chambers the inner filamentous coating of the bridge is thin. Characteristic vesicles are observed in close contact with this coating. The inner coating of the vitellogenic chambers is fully developed although vesicles are only sporadically associated with it. These observations suggest that the vesicles are involved in the formation of the filamentous coating.This work was supported by Government Problem Grant MR II, 1.6.4.  相似文献   

18.
The dispersal behaviour of the predatory mite Phytoseiulus persimilis Athias-Henriot between bean plants was studied in a greenhouse. The aim of the study was to estimate the rate of predator emigration affected by different densities of Tetranychus urticae Koch and different numbers of between-plant connections (bridges). The results show that predators emigrate from a plant almost exclusively as a response to the local prey density whereas the loss rate (the per capita rate at which predators disappear from the system) also depends on the prey density on the surrounding plants, provided they are connected to the central plant by bridges. © Rapid Science Ltd. 1998  相似文献   

19.
20.
Mineral bridges in nacre   总被引:1,自引:0,他引:1  
We confirm with high-resolution techniques the existence of mineral bridges between superposed nacre tablets. In the towered nacre of both gastropods and the cephalopod Nautilus there are large bridges aligned along the tower axes, corresponding to gaps (150–200 nm) in the interlamellar membranes. Gaps are produced by the interaction of the nascent tablets with a surface membrane that covers the nacre compartment. In the terraced nacre of bivalves bridges associated with elongated gaps in the interlamellar membrane (>100 nm) have mainly been found at or close to the edges of superposed parental tablets. To explain this placement, we hypothesize that the interlamellar membrane breaks due to differences in osmotic pressure across it when the interlamellar space below becomes reduced at an advanced stage of calcification. In no cases are the minor connections between superimposed tablets (<60 nm), earlier reported to be mineral bridges, found to be such.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号