首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to investigate the antibacterial activity of seven ethanolic extracts and three aqueous extracts from various parts (leaves, stems and flowers) of A. aroma against 163 strains of antibiotic multi-resistant bacteria. The disc diffusion assay was performed to evaluate antibacterial activity of the A. aroma crude extracts, against several Gram-positive bacteria (E. faecalis, S. aureus, coagulase-negative stahylococci, S. pyogenes, S. agalactiae, S. aureus ATCC 29213, E. faecalis ATCC 29212) and Gram-negative bacteria (E. coli., K. pneumoniae, P. mirabilis, E. cloacae, S. marcescens, M morganii, A. baumannii, P. aeruginosa, S. maltophilia, E. coli ATCC 35218, P. aeruginosa ATCC 27853, E. coli ATCC 25922). All ethanolic extracts showed activity against gram-positive bacteria. Among all obtained extracts, only leaf and flower fluid extracts showed activity against Gram-negative bacteria. Based on this bioassay, leaf fluid extracts tended to be the most potent, followed by flower fluid extracts. Minimal inhibitory concentration (MIC) values of extracts and antibiotics were comparatively determined by agar and broth dilution methods. Both extracts were active against S. aureus, coagulase-negative stahylococci, E. faecalis and E. faecium and all tested Gram-negative bacteria with MIC values from 0.067 to 0.308 mg/ml. In this study the minimal bactericidal concentration (MBC) values were identical or twice as high than the corresponding MIC for leaf extracts and four or eight times higher than MIC values for flower extracts. This may indicate a bactericidal effect. Stored extracts have similar antibacterial activity as recently obtained extracts. The A. aroma extracts of leaves and flowers may be useful as antibacterial agents against Gram- negative and Gram-positive antibiotic multi-resistant microorganisms.  相似文献   

2.
土茯苓提取物抗细菌活性的研究   总被引:4,自引:0,他引:4  
通过测定土茯苓提取物对革兰氏阳性菌和革兰氏阴性菌的抑菌活性,来更全面的评价和综合利用土茯苓资源,实验结果表明土苓955乙醇和乙酸乙酯的提取物抑菌范围广,服抑菌活性强,这两种提取物的MIC和MBC值显示了土茯苓作为抗细菌资源的可利用价值。  相似文献   

3.
Aims:  The aim of the study was to evaluate the in vitro antibacterial activity of glucosinolates and their enzymatic hydrolysis product against bacteria isolated from the human intestinal tract.
Methods and results:  Using a disc diffusion bioassay, different doses of intact glucosinolates and their corresponding hydrolysis products were tested. There were clear structure–activity and concentration differences with respect to the in vitro growth inhibition effects as well as differences in the sensitivities of the individual bacteria. The most effective glucosinolate hydrolysis products were the isothiocyanates; sulforaphane and benzyl isothiocyanate were the best inhibitors of growth. Indole-3-carbinol had some inhibitory effects against the Gram-positive bacteria but had no effect, even at the highest dose, against the Gram-negative bacteria. Indole-3-acetonitrile had some inhibitory activity against the Gram-negative bacteria. Glucosinolates, nitriles and amines were ineffective at all the doses used.
Conclusions:  Glucosinolate hydrolysis products and specifically the isothiocyanates SFN and BITC have significant antimicrobial activity against Gram-positive and Gram-negative bacteria, and might be useful in controlling human pathogens through the diet.
Significance and Impact of the Study:  This the first major in vitro study demonstrating the potential of these natural dietary chemicals as an alternative to, or in combination with, current antibiotic-based therapies for treating infectious diseases.  相似文献   

4.
Wang W  Tao R  Tong Z  Ding Y  Kuang R  Zhai S  Liu J  Ni L 《Peptides》2012,33(2):212-219
Dental caries and pulpal diseases are common oral bacterial infectious diseases. Controlling and reducing the causative pathogens, such as Streptococcus mutans and Enterococcus faecalis, is a key step toward prevention and treatment of the two diseases. Chrysophsin-1 is a cationic antimicrobial peptide having broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. In this study, we investigated the antibacterial activity of chrysophsin-1 against several oral pathogens and S. mutans biofilms and performed a preliminary study of the antimicrobial mechanism. Cytotoxic activity of chrysophsin-1 against human gingival fibroblasts (HGFs) was investigated. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and time-kill assay were used to evaluate the killing effect of chrysophsin-1. Scanning electron microscopy (SEM) was used to analyze morphological and membrane change in oral pathogens. Live/Dead staining, in conjunction with confocal scanning laser microscopy (CSLM), was used to observe and analyze S. mutans biofilms. MIC and MBC results demonstrated that chrysophsin-1 had different antimicrobial activities against the tested oral microbes. Lysis and pore formation of the cytomembrane were observed following treatment of the bacteria with chrysophsin-1 for 4h or 24h by SEM. Furthermore, CLSM images showed that chrysophsin-1 remarkably reduced the viability of cells within biofilms and had a significantly lethal effect against S. mutans biofilms. Toxicity studies showed that chrysophsin-1 at concentration between 8 μg/ml and 32 μg/ml had little effect on viability of HGFs in 5 min. Our findings suggest that chrysophsin-1 may have potential clinical applications in the prevention and treatment of dental caries and pulpal diseases.  相似文献   

5.
《Phytomedicine》2015,22(2):245-255
The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics.The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml).Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75–1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens.  相似文献   

6.
The present study examined the antimicrobial activity of the peptide ghrelin. Both major forms of ghrelin, acylated ghrelin (AG) and desacylated ghrelin (DAG), demonstrated the same degree of bactericidal activity against Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), while bactericidal effects against Gram-positive Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) were minimal or absent, respectively. To elucidate the bactericidal mechanism of AG and DAG against bacteria, we monitored the effect of the cationic peptides on the zeta potential of E. coli. Our results show that AG and DAG similarly quenched the negative surface charge of E. coli, suggesting that ghrelin-mediated bactericidal effects are influenced by charge-dependent binding and not by acyl modification. Like most cationic antimicrobial peptides (CAMPs), we also found that the antibacterial activity of AG was attenuated in physiological NaCl concentration (150mM). Nonetheless, these findings indicate that both AG and DAG can act as CAMPs against Gram-negative bacteria.  相似文献   

7.
Salvadora persica sticks are used for chewing and oral-hygiene measures worldwide. The growth inhibition and anti-biofilm effects of various extracts on cariogenic Streptococcus mutans isolates were evaluated. Biofilm inhibition, gas chromatography-mass spectrometry (GC-MS) analyses for phytochemicals and their possible mode of interaction with biofilm response regulators were revealed using LigandFit docking protocols. All S. persica extracts showed considerable inhibitory activity and the cariogenic S. mutans showed varied susceptibility when compared with controls. The percentage reduction in biofilm inhibition obtained for methanol, ethanol, chloroform, acetone, and aqueous extracts were 87.92%, 85.75%, 72.44%, 61.66% and 58.68%, respectively. GC-MS analyses revealed?>28 compounds, of which benzyl (6Z,9Z,12Z)-6,9,12-octadecatrienoate, 3-benzyloxy-1-nitro-butan-2-ol and 1,3-cyclohexane dicarbohydrazide interacted efficiently with the bacterial communication quorum-sensing (QS) regulators Streptococcus OmpP and Staphylococcus Lux proteins. The bioactive, dual-function, anti-biofilm agents in S. persica not only inhibit growth, but also control the colonization and accumulation of caries-causing S. mutans.  相似文献   

8.
Aims:  To search for antimicrobial compounds against pathogenic bacteria from grape vines ( Vitis spp.). To investigate the antimicrobial efficacy of active compounds towards methicillin-resistant Staphylococcus aureus (MRSA).
Methods and Results:  The root extracts of taiwanese wild grape ( Vitis thunbergii var. taiwaniana ) showed marked activities against Gram-positive bacteria using the disc diffusion method. After purification, the active compound 1 was confirmed as heyneanol A by mass spectroscopy and nuclear magnetic resonance. Heyneanol A showed an minimum inhibitory concentration (MIC) value of 2  μ g ml−1 towards MRSA and a value of 2 to 4  μ g ml−1 for Enterococcus faecium , S. aureus , Streptococcus agalactiae and Streptococcus pyogenes . In addition, the contents of heyneanol A were determined as 36 mg g−1 in roots of taiwanese wild grape.
Conclusions:  The root extracts of grapevines have good antimicrobial activities towards some strains of Gram-positive pathogens. Heyneanol A, the major antimicrobial compound, is especially active towards MRSA. In addition, the abundances of heyneanol A and other stilbenes in the roots of grapevines make it possible to produce natural antimicrobial compounds from this plant species.
Significance and Impact of the Study:  This study reports for the first time the antimicrobial compounds in the root extracts of grapevines. The results will have clinical significance owing to their activities against MRSA.  相似文献   

9.
Aqueous, methanol, ethyl acetate, and chloroform extracts of the root, stem, and leaf of Raphanus sativus were studied for antibacterial activity against food-borne and resistant pathogens. All extracts except the aqueous extracts had significant broad-spectrum inhibitory activity. The ethyl acetate extract of the root had the potent antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.016–0.064 mg/ml and a minimum bactericidal concentration (MBC) of 0.016–0.512 mg/ml against health-damaging bacteria. This was followed by the ethyl acetate extracts of the leaf and stem with MICs of 0.064–0.256 and 0.128–0.256 mg/ml, respectively and MBCs of 0.128–2.05 and 0.256–2.05 mg/ml, respectively. The ethyl acetate extracts of the different parts of R. sativus retained their antibacterial activity after heat treatment at 100°C for 30 min, and their antibacterial activity was enhanced when pH was maintained in the acidic range. Hence this study, for the first time, demonstrated that the root, stem, and leaf of R. sativus had significant bactericidal effects against human pathogenic bacteria, justifying their traditional use as anti-infective agents in herbal medicines.  相似文献   

10.
Chicken egg white lysozyme exhibits antimicrobial activity against both Gram-positive and Gram-negative bacteria. Fractionation of clostripain-digested lysozyme yielded a pentadecapeptide with antimicrobial activity but without muramidase activity. The peptide was isolated and its sequence found to be I-V-S-D-G-N-G-M-N-A-W-V-A-W-R (amino acids 98-112 of chicken egg white lysozyme). A synthesized peptide of identical sequence had the same bactericidal activity as the natural peptide. Replacement of Trp 108 with tyrosine significantly reduced the antibacterial capacity of the peptide. By replacement of Trp 111 with tyrosine the antibacterial activity was lost. Replacement of Asn 106 with the positively charged arginine strongly increased the antibacterial capacity of I-V-S-D-G-N-G-M-N-A-W-V-A-W-R. The peptide I-V-S-D-G-N-G-M consisting of the eight amino acids of the N-terminal side had no bactericidal properties, whereas the peptide N-A-W-V-A-W-R of the C-terminal side retained some bactericidal activity. Replacement of asparagine 106 by arginine (R-A-W-V-A-W-R) increased the bactericidal activity considerably. The D enantiomer of R-A-W-V-A-W-R was as active as the L form against five of the tested bacteria, but substantially less active against Serratia marcescens, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus lentus. For these bacterial species some stereospecific complementarity between receptor structures of the bacteria and the peptide can be assumed.  相似文献   

11.
The aim of this study was to assess the antibacterial and antifungal potential of some Romanian medicinal plants, arnica--Arnica montana, wormwood--Artemisia absinthium and nettle--Urtica dioica. In order to perform this antimicrobial screening, we obtained the vegetal extracts and we tested them on a series of Gram-positive and Gram-negative bacteria, and also against two fungal strains. The vegetal extracts showed antimicrobial activity preferentially directed against the planktonic fungal and bacterial growth, while the effect against biofilm formation and development was demonstrated only against S. aureus and C. albicans. Our in vitro assays indicate that the studied plant extracts are a significant source of natural alternatives to antimicrobial therapy, thus avoiding antibiotic therapy, the use of which has become excessive in recent years.  相似文献   

12.
An attempt was made to control waterborne pathogens by using medicinal plant extracts. One hundred and twenty-six water samples from filtration plants, tube wells, and water supplies were collected and analyzed for total and faecal Coliform bacteria as well as for total viable count. Results showed that waterborne pathogens were numerous and significantly higher than the World Health Organization's recommended guidelines. The methanolic and aqueous extracts of different parts of Colebrookia oppositifolia (Labiateae) were examined for antibacterial activities in vitro by an agar diffusion method. Antibacterial activity of leaves, shoots, and roots of Colebrookia oppositifolia was assessed against Gram positive and Gram negative bacteria that were isolated and identified from water samples by the API 20E method. Extract of roots showed more antibacterial activities against Staph. aureus and B. cereus var. mycoides, Pseudomonas aeruginosa, Klebsiella pneumonia, and Shigella flexneri at 37°C, than extracts from leaves and shoots. The lowest MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) were observed in roots as compared to shoots and leaves. These results suggest that there is an urgent need for improvement in existing water quality treatment. Secondly, the fruit extract can be practical for protection and to avoid risk of contamination by waterborne pathogens and to promote indigenous solutions for disease-control and environmental management.  相似文献   

13.
Food and medicinal plants have been used for centuries against human diseases. The methanolic and aqueous extracts of different parts of Ocimum bacillicum Lam. (Niazboo or Sweet basil) of family Lamiaceae were investigated in vitro for their antibacterial properties against waterborne pathogens. The antibacterial properties of different parts of Ocimum bacillicum samples were assessed against Gram positive and Gram negative bacteria, which were isolated from water samples and identified by the API 20E method. The extracts from leaves and seeds of Ocimum bacillicum showed more antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, and E. coli at 37°C than those obtained from shoots, roots, and buds. The lowest minimum inhibitory concentrations and minimum bactericidal concentrations were observed for leaves and seeds as compared to other parts of the plant. No activity of alum was observed against the tested bacterial strains. The seeds of Ocimum bacillicum were associated with higher coagulation activity in comparison to other parts of the plant and were comparable with alum. These results suggest that parts of a plant offer a potential for antimicrobial treatment of drinking water, but needs further exploration.  相似文献   

14.
Lipopolysaccharide (LPS), the important component of the outer membrane of Gram-negative bacteria, contributes to the integrity of the outer membrane and protects the cell against bactericidal agents, including antimicrobial peptides. However, the mechanisms of interaction between antimicrobial peptides and LPS are not clearly understood. Halictines-2 (HAL-2), one of the novel antimicrobial peptides, was isolated from the venom of the eusocial bee Halictus sexcinctus. HAL-2 has exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria and even against cancer cells. Here, we studied the interactions between HAL-2 and LPS to elucidate the antibacterial mechanism of HAL-2 in vitro. Our results show that HAL-2 adopts a significant degree of β-strand structure in the presence of LPS. LPS is capable of inducing HAL-2 amyloid formation, which may play a vital role in its antimicrobial activity.  相似文献   

15.
We show here that silver nanoparticles (AgNP) were intrinsically antibacterial, whereas gold nanoparticles (AuNP) were antimicrobial only when ampicillin was bound to their surfaces. Both AuNP and AgNP functionalized with ampicillin were effective broad-spectrum bactericides against Gram-negative and Gram-positive bacteria. Most importantly, when AuNP and AgNP were functionalized with ampicillin they became potent bactericidal agents with unique properties that subverted antibiotic resistance mechanisms of multiple-drug-resistant bacteria.  相似文献   

16.
Various parts of Datura innoxia were examined for potential antibacterial activity by preparing their crude aqueous and organic extracts against Gram-negative bacteria (Escherichia coli and Salmonella typhi) and Gram-positive bacteria (Bacillus cereus, Bacillus subtilis and Staphylococcus aureus). The results of agar well diffusion assay indicated that the pattern of inhibition depends largely upon the plant part, solvent used for extraction and the organism tested. Extracts prepared from leaves were shown to have better efficacy than stem and root extracts. Organic extracts provided potent antibacterial activity as compared to aqueous extracts. Among all the extracts, methanolic extract was found most active against almost all the bacterial species tested. Gram-positive bacteria were found most sensitive as compared to Gram-negative bacteria. Staphylococcus aureus was signifi cantly inhibited by almost all the extracts even at very low MIC followed by other Gram-positives. For Escherichia coli (a Gram-negative bacterium), the end point was not reached for ethyl acetate extract while it was very high for other extracts. The study promises an interesting future for designing a potentially active antibacterial agent from Datura innoxia.  相似文献   

17.
Antimicrobial peptides (AMPs) provide a potential source of new antimicrobial therapeutics for the treatment of multidrug-resistant pathogens. To develop Gram-negative selective AMPs that can inhibit the effects of lipopolysaccharide (LPS)-induced sepsis, we added various rationally designed LPS-targeting peptides [amino acids 28–34 of lactoferrin (Lf28–34), amino acids 84–99 of bactericidal/permeability increasing protein (BPI84–99), and de novo peptide (Syn)] to the potent AMP, GNU7 (RLLRPLLQLLKQKLR). Compared to our original starting peptide GNU7, hybrid peptides had an 8- to 32-fold improvement in antimicrobial activity against Gram-negative bacteria, such as Escherichia coli and Salmonella typhimurium. Among them, Syn-GNU7 showed the strongest LPS-binding and -neutralizing activities, thus allowing it to selectively eliminate Gram-negative bacteria from within mixed cultures. Our results suggest that LPS-targeting peptides would be useful to increase the antimicrobial activity and selectivity of other AMPs against Gram-negative bacteria.  相似文献   

18.
To determine the antibacterial activity of defensins and other antimicrobial peptides in biopsy extracts, we evaluated a flow cytometric method with the membrane potential sensitive dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)]. This assay enables us to discriminate intact non-fluorescent and depolarized fluorescent bacteria after exposure to antimicrobial peptides by measurement at the direct target, the cytoplasmic membrane and the membrane potential. The feasibility of the flow cytometric assay was evaluated with recombinant human beta-defensin 3 (HBD-3) against 25 bacterial strains representing 12 species. HBD-3 showed a broad-spectrum dose dependent activity and the minimal dose to cause depolarization ranged from 1.25 to >15 microg/ml HBD-3, depending on the species tested. The antibacterial effect was diminished with sodium chloride or dithiothreitol and could be abrogated with a HBD-3 antibody. Additionally, isolated cationic extracts from human intestinal biopsies showed a strong bactericidal effect against Escherichia coli K12, E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923, which was diminished towards E. coli at 150 mM NaCl, whereas the activity towards S. aureus ATCC 25923 remained unaffected at physiological salt concentrations. DTT blocked the bactericidal effect of biopsy extracts completely.  相似文献   

19.
NK-lysin is an antimicrobial protein produced by cytotoxic T lymphocytes and natural killer cells. In this study, we examined the biological property of a peptide, NKLP27, derived from tongue sole (Cynoglossus semilaevis) NK-lysin. NKLP27 is composed of 27 amino acids and shares little sequence identity with known NK-lysin peptides. NKLP27 possesses bactericidal activity against both Gram-negative and Gram-positive bacteria including common aquaculture pathogens. The bactericidal activity of NKLP27 was dependent on the C-terminal five residues, deletion of which dramatically reduced the activity of NKLP27. During its interaction with the target bacterial cells, NKLP27 destroyed cell membrane integrity, penetrated into the cytoplasm, and induced degradation of genomic DNA. In vivo study showed that administration of tongue sole with NKLP27 before bacterial and viral infection significantly reduced pathogen dissemination and replication in tissues. Further study revealed that fish administered with NKLP27 exhibited significantly upregulated expression of the immune genes including those that are known to be involved in antibacterial and antiviral defense. These results indicate that NKLP27 is a novel antimicrobial against bacterial and viral pathogens, and that the observed effect of NKLP27 on bacterial DNA and host gene expression adds new insights to the action mechanism of fish antimicrobial peptides.  相似文献   

20.
An attempt was made to study the bioactive compounds from a terrestrial Streptomyces sp. ANU 6277 isolated from laterite soil. Four active fractions were recovered from the solvent extracts obtained from the culture broth of five day-old strain. Three bioactive compounds were purified and identified as 3-phenylpropionic acid, anthracene-9,10-quinone and 8-hydroxyquinoline. The components of the partially purified fourth active fraction were analyzed by gas chromatography-mass spectrometry and identified as benzyl alcohol, phenylethyl alcohol and 2H-1, 4-benzoxazin-3 (4H)-one. Four active fractions were screened for antimicrobial activity against Gram-positive and Gram-negative bacteria, and fungi including phytopathogenic, toxigenic and dermatophytic genera. Among these metabolites, 8-hydroxyquinoline exhibited strong antibacterial and antifungal activity as compared to 3-phenylpropionic acid and anthracene-9,10-quinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号