首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of low density lipoprotein increases its atherogenic potential. During oxidation there is an extensive conversion of lecithin to lysolecithin. In rat aortic smooth muscle cells, 2-25 micrograms/ml lysolecithin elevated cytosolic calcium concentration up to 560%. Lysolecithin (10-20 micrograms/ml) increased [3H]thymidine incorporation from 15 cpm/mg cell protein (controls) up to 189 cpm/mg cell protein. Lysolecithin (10 micrograms/ml) potentiated the PDGF-induced (50 ng/ml) [3H]thymidine incorporation up to 6.3 times. The results indicate that lysolecithin could induce mechanisms, by which oxidized low density lipoproteins could promote cell growth and thus contribute to atherosclerosis.  相似文献   

2.
3.
4.
Summary The effect of a reduction in protein kinase C activity on the metabolism of exogenous [3H]diC8 by freshly isolated smooth muscle cells from rabbit aorta and cultured A10 smooth muscle cells was determined. The metabolism of [3H]diC8 by both smooth muscle cell preparations was predominantly by hydrolysis to yield monoC8 and glycerol (lipase pathway); very little radioactivity was incorporated into phospholipids. Diacylglycerol lipase activity measured in vitro with A10 cell homogenates was much greater than diacylglycerol kinase activity. The addition of the protein kinase C inhibitor H-7 to incubations of isolated aortic smooth muscle cells and cultured A10 cells had no significant effect on the metabolism of [3H]diC8. Protein kinase C activity in cultured A10 cells preincubated for 20 h with a phorbol ester was reduced to 14% of control as a consequence of down-regulation, but diC8 metabolism was not changed. Therefore, protein kinase C does not regulate the metabolism of diacylglycerols in aortic smooth muscle cells.Abbreviations IP3 inositol 1,4,5-trisphosphate - DG diacylglycerol - MG monoacylglycerol - PL phospholipid(s) - diC8 dioctanoylglycerol - H-7 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride - monoC8 monooctanoylglycerol - PS phosphatidylserine - PDBu phorbol 12,13-dibutyrate  相似文献   

5.
Angiotensin II acts on cultured rat aortic vascular smooth muscle cells to stimulate phospholipase C-mediated hydrolysis of membrane phosphoinositides and subsequent formation of diacylglycerol and inositol phosphates. In intact cells, angiotensin II induces a dose-dependent increase in diglyceride which is detectable after 5 s and sustained for at least 20 min. Angiotensin II (100 nM)-stimulated diglyceride formation is biphasic, peaking at 15 s (227 +/- 19% control) and at 5 min (303 +/- 23% control). Simultaneous analysis of labeled inositol phospholipids shows that at 15 s phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP) decline to 52 +/- 6% control and 63 +/- 5% control, respectively, while phosphatidylinositol (PI) remains unchanged. In contrast, at 5 min, PIP2 and PIP have returned toward control levels (92 +/- 2 and 82 +/- 4% control, respectively), while PI has decreased substantially (81 +/- 2% control). The calcium ionophore ionomycin (15 microM) stimulates diglyceride accumulation but does not cause PI hydrolysis. 4 beta-Phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibits early PIP and PIP2 breakdown and diglyceride formation, without inhibiting late-phase diglyceride accumulation. Thus, angiotensin II induces rapid transient breakdown of PIP and PIP2 and delayed hydrolysis of PI. The rapid attenuation of polyphosphoinositide breakdown is likely caused by a protein kinase C-mediated inhibition of PIP and PIP2 hydrolysis. While in vascular smooth muscle stimulated with angiotensin II inositol 1,4,5-trisphosphate formation is transient, diglyceride production is biphasic, suggesting that initial and sustained diglyceride formation from the phosphoinositides results from different biochemical and/or cellular processes.  相似文献   

6.
7.
Single intramural stimulation of the atropinized muscle strip of the guinea pig stomach by square pulses was accompanied by the formation of inhibitory postsynaptic potentials (IPSPs) in the muscle cells and by relaxation of the strip. The mean latent period of the IPSPs was 150±15 msec, and the time for its amplitude to rise and fall was 150±15 and 375±92 msec respectively. The latent period of the onset of relaxation of the muscle strip was 1850±230 msec. The amplitude and rate of rise of these IPSPs increased with an increase in the strength of stimulation. This shows that the same gastric muscle cell is under the inhibitory influence not of one, but of several nerve fibers. The effectiveness of synaptic transmission was largely dependent on the character of the preceeding stimulation. For instance, in response to repeated stimulation with short intervals facilitation was observed, but after repetitive stimulation had ended posttetanic depression followed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 216–222, March–April, 1972.  相似文献   

8.
Stimulation of receptor-operated (ROCs) and store-operated (SOCs) Ca2+-permeable cation channels by vasoconstrictors has many important physiological functions in vascular smooth muscle. The present review indicates that ROCs and SOCs with diverse properties in different blood vessels are likely to be explained by composition of different subunits from the canonical transient receptor potential (TRPC) family of cation channel proteins. In addition we illustrate that activation of native TRPC ROCs and SOCs involves different phospholipase-mediated transduction pathways linked to generation of diacylglycerol (DAG). Moreover we describe recent novel data showing that the endogenous phospholipid phosphoinositol 4,5-bisphosphate (PIP2) has profound and contrasting actions on TRPC ROCs and SOCs. Optimal activation of a native TRPC6 ROC by angiotensin II (Ang II) requires both depletion of PIP2 and generation of DAG which leads to stimulation of TRPC6 via a PKC-independent mechanism. The data also indicate that PIP2 has a marked constitutive inhibitory action of TRPC6 and DAG and PIP2 are physiological antagonists on TRPC6 ROCs. In contrast PIP2 stimulates TRPC1 SOCs and has an obligatory role in activation of these channels by store-depletion which requires PKC-dependent phosphorylation of TRPC1 proteins. Finally, we conclude that interactions between PIP2 bound to TRPC proteins at rest, generation of DAG and PKC-dependent phosphorylation of TRPC proteins have a fundamental role in activation mechanisms of ROCs and SOCs in vascular smooth muscle.  相似文献   

9.
The effects of oxytocin, a uterotonic polypeptide hormone, on the voltage-dependent slow calcium, fast sodium, and potassium channel currents were studied using whole-cell voltage clamp of freshly isolated cells from late pregnant (18-21 day) rat myometrium. The calcium current was rapidly inhibited by oxytocin (about 25% inhibition at 20 nM) in a dose-dependent manner, and this inhibitory effect was completely reversible by washout. However, inhibition was not observed when barium was used as the charge carrier. Sodium current and potassium current were not modified by oxytocin, thus sodium and potassium currents may not play important roles in oxytocin-induced augmentation of uterine contraction. It is concluded that oxytocin stimulates uterine contraction by mechanisms other than augmentation of the voltage-dependent calcium current, e.g., by release of Ca from sarcoplasmic reticulum (by inositol triphosphate) or by activation of a receptor-operated Ca channel. The inhibition of the slow calcium current may be induced by the elevation of [Ca]i.  相似文献   

10.
Hamad AM  Knox AJ 《FEBS letters》2001,506(2):91-96
We have characterised the mechanisms involved in the antiproliferative effect of NO in human airway smooth muscle cells (HASMC). S-Nitroso-N-acetyl penicillamine, a nitric oxide donor, inhibited proliferation in both G(1) and S phases of the cell cycle. Additionally, experiments with 8-bromo-cGMP, haemoglobin, a NO scavenger and zaprinast, a cGMP-specific phosphodiesterase inhibitor, showed that both effects were NO-mediated. The G(1) phase inhibition was cGMP-dependent whereas the S phase inhibition was due to a cGMP-independent inhibition of ribonucleotide reductase. These results demonstrate that NO inhibits HASMC proliferation by cGMP-dependent and -independent mechanisms acting at distinct points in the cell cycle.  相似文献   

11.
The influence of Ca-antagonists and antispasmodic drugs on contractions by ACh and by DMPP were investigated. Verapamil (10(-5) to 10(-4) M), diltiazem (10(-5) to 10(-4) M) and D-600 (10(-5) to 10(-4) M) depressed both the contractions in a dose dependent manner. Papaverine (10(-5) to 10(-4) M) and Aspaminol (10(-6) to 10(-5) M) also depressed both the contractions in a dose dependent manner. These findings indicate that Ca2+, which initiates the contraction by ACh, is supplied from both the external medium and intracellular store sites.  相似文献   

12.
Endothelin, a novel peptide isolated from the conditioned medium of endothelial cells, causes a slow, sustained contraction of vascular smooth muscle, but its mechanism of action remains unclear. To determine whether the diacylglycerol/protein kinase C signalling pathway is stimulated by endothelin, we exposed cultured rat aortic smooth muscle cells to endothelin and measured diacylglycerol accumulation and protein kinase C-dependent protein phosphorylation. Endothelin stimulated a dose-dependent, biphasic increase in diacylglycerol, which was sustained for at least 20 min. This peptide also induced a prolonged phosphorylation of an acidic protein with a molecular weight of 76,000, which was detectable by 30 s and sustained for at least 20 min. This phosphorylation could be mimicked by phorbol 12-myristate 13-acetate, but not by ionomycin, and was markedly reduced when protein kinase C was down-regulated by a 24-h pretreatment with phorbol 12,13-dibutyrate. These results suggest that endothelin causes a robust stimulation of the diacylglycerol/protein kinase C pathway in cultured vascular smooth muscle cells, and that this mechanism may contribute importantly to the physiologic events stimulated by endothelin in intact blood vessels, including slow, tonic contraction and Ca2+ influx.  相似文献   

13.
To study the role of epithelial-mesenchymal interactions in myometrial development, uteri from neonatal Balb/c mice 1 to 60 days postpartum were utilized. Intact (untrypsinized) uteri, trypsinized but unseparated uteri, homotypic uterine tissue recombinants (separated-recombined), or uterine mesenchyme alone were grafted beneath the renal capsule of syngeneic female hosts and grown for 1 mo. Uterine mesenchyme from 1-day mice grafted alone produced small amounts of smooth muscle, most of which was associated with vasculature, whereas uterine mesenchyme from older donors possessing a rudimentary myometrium at the time of grafting formed intermediate amounts of myometrium (actin-positive smooth muscle bundles). In contrast, all specimens containing epithelium (intact, trypsinized, and separated-recombined) developed large amounts of myometrium. Uterine epithelia from neonatal through adult stages were equally effective in permissively inducing myometrial development in 1-day uterine mesenchyme. From these data, it is apparent that uterine epithelium plays an important promotional role in the differentiation and possibly the spatial organization of the myometrium.  相似文献   

14.
Summary Diacylglycerol (DAG) production has not been reported in previous studies that have characterized inositol phosphate production during alpha-1 adrenergic receptor signal transduction in the DDT1 MF-2 genital tract myocytes. The current study sought to measure norepinephrine (NE)-stimulated DAG production in these transformed myocytes utilizing thin layer chromatography. DAG production was characterized as an alpha-1 adrenergic mediated event utilizing subtype specific adrenergic agonist and antagonists. DAG production occurred in response to physiologic concentration of NE, was apparent by 30 s and was significantly increased by 2 min. Maximal DAG production was unaffected by pretreatment of the myocytes for 96 h with testosterone, which has previously been shown to induce a doubling of alpha-1 adrenergic receptors in these cells. In contrast, testosterone pretreatment did result in a shift of the dose-response curve resulting in a significantly lower EC50 for NE in the treated cells compared to control myocytes. In conclusion, these studies have confirmed that DAG production occurs as a component of alpha-1 adrenergic signal transduction in the DDT1 MF-2 myocytes; transduction events that were modulated by testosterone resulting in increased agonist sensitivity.  相似文献   

15.
Angiotensin II stimulates sequential phospholipase C-mediated hydrolysis of initially the polyphosphoinositides and subsequently phosphatidylinositol (PI) in cultured rat aortic smooth muscle cells resulting in biphasic, sustained formation of diacylglycerol (DG). The mechanisms underlying this delayed induction of sustained DG accumulation are unknown but may be related to cellular events including processing of the angiotensin II receptor-ligand complex. In the present study, we characterized the kinetics of angiotensin II receptor sequestration and studied the effects of interventions which interfere with receptor processing on the pattern of angiotensin II-induced DG formation and phosphoinositide hydrolysis. Conversion of the angiotensin II receptor to an acid-resistant form was temperature-dependent, with half-times of 1.5 min at 37 degrees C and 7 min at 19 degrees C. Reducing the temperature to 25 or 19 degrees C caused a marked temporal separation between the two phases of DG accumulation. There was a close temporal correlation between the effect of temperature on receptor sequestration and on sustained DG accumulation. Furthermore, phenylarsine oxide (5 min, 10 microM), which inhibited angiotensin II receptor internalization, also selectively inhibited the sustained phase of DG accumulation (81 +/- 6% inhibition). Monensin and chloroquine, which interfere with receptor processing through the lysosomal-degradative pathway, had no effect on angiotensin II-induced DG formation in these cells, suggesting that the processing event important to hormonally induced sustained DG accumulation occurs early in the internalization pathway, probably at the level of the plasma membrane. Moreover, the acid-resistant state of the angiotensin II receptor-ligand complex retained its ability to signal, since removal of the surface signal by competitive antagonism with Sar1-Ile8-angiotensin II or acid-wash only slowly reversed accumulation of DG and depression of total cell calcium. These experiments support our previous observation that the initial and sustained phases of angiotensin II-induced diacylglycerol formation in vascular smooth muscle are differentially controlled and suggest that an early event in the cellular processing of the angiotensin II-receptor complex is essential to maintenance of DG accumulation.  相似文献   

16.
Neonatal rat aortic smooth muscle cell cultures produce two major soluble elastin molecules termed protropoelastin (77 kDa) and tropoelastin (71 kDa). Cell layer extracts are protroproelastin-enriched, while protropoelastin, tropoelastin, and significant amounts of discrete elastin fragments (Mr of 66,000, 61,000, 56,000, and 45,000) are present in preparations from the medium of these cultures. To determine the role of the various elastin molecules in the metabolism of elastin in neonatal rat aortic smooth muscle cell cultures, the amino termini of these proteins were sequenced. All soluble elastin components present in the medium were purified as a single peak by high performance liquid chromatography; further separation of the components was achieved by polyacrylamide gel electrophoresis and electroblotting. The bands were excised and sequenced. The amino-terminal sequences of protropoelastin, tropoelastin, and the 66-kDa, 61-kDa, and 56-kDa fragments were identical: Gly-Gly-Val-Pro-Gly-Ala-Val-Pro-Gly-Gly. This sequence is identical with published amino-terminal sequences of tropoelastins from several other species. As expected, when the cell cultures were pulsed with [3H]valine, all the soluble elastin molecules were radioactive, while only protropoelastin appeared radioactive after [35S] cysteine pulsing. Since cysteine is present only in the carboxyl-terminal end of the molecule, all the data indicate that the cleavage of the elastin fragments identified in the culture are occurring at the carboxyl end of protropoelastin. These results are consistent with the original hypothesis that a precursor-product relationship exists between the 77-kDa and 71-kDa soluble elastin molecules. Based on known tropoelastin sequences and the molecular weights of the discrete fragments, additional fragmentation of protropoelastin and/or tropoelastin most likely occurs at the lysine/alanine-enriched domains presumably involved in cross-link formation.  相似文献   

17.
We previously determined that the cellular repressor of E1A-stimulated genes, (CREG) plays a role in the maintenance of the mature phenotype of vascular smooth muscle cells (SMCs). This study aimed to identify the role of CREG in modulating the migration of SMCs. Recombinant virus-mediated CREG expression inhibited the cellular migration of cultured SMCs associated with down-regulated activity of matrix metalloproteinase-9 (MMP-9). In contrast, CREG knockdown via the retroviral transfer of short hairpin RNAs promoted cellular migration. Enzyme-linked immunosorbent assay and endocytosis analysis revealed that CREG knockdown attenuated the internalization and increased secretion of insulin-like growth factor (IGF)-II. Western blot analysis demonstrated that both phosphoinositide 3-kinase (PI3K) and phosphatase Akt were enhanced in CREG knockdown SMCs. Furthermore, the effect of CREG knockdown on SMC migration was abrogated in a dose-dependent manner by the addition of either IGF-II neutralizing antibody or the PI3K inhibitor, LY294002. These results indicate that the CREG knockdown-mediated increase in IGF-II secretion promoted cellular migration in SMCs via the PI3K/Akt signal pathway. Additionally, blockage of IGF-II binding to the mannose-6-phosphate/IGF-II receptor (M6P/IGF2R) by IGF2R antibody or recombinant IGF2R fragment attenuated the endocytosis of IGF-II in cells overexpressing CREG. This indicates that M6P/IGF2R is involved in the regulation of CREG-mediated IGF-II endocytosis. In summary, these data demonstrate for the first time that CREG plays a critical role in the inhibition of SMC migration, as well as maintaining SMCs in a mature phenotype. These results may provide a new therapeutic target for vascular disease associated with neointimal hyperplasia.  相似文献   

18.
19.
The effects of cadmium (Cd) on smooth muscle myosin phosphorylation have been investigated using an in vitro system comprising myosin filaments containing endogenous calmodulin (CM) and myosin light chain kinase (MLCKase). In the absence of calcium (Ca), Cd as well as some other divalent cations caused no activation of phosphorylation. However, when at least one (or possibly two) Ca2+ were bound per CM, the addition of 10 microM to 40 microM Cd2+ resulted in a 2 to 3 fold acceleration of the phosphorylation rate. Higher Cd concentrations caused inhibition of the system independent of Ca2+ concentration through the formation of Cd-ATP complexes. These results explain some previously controversial data on the complex effects of Cd in intact smooth muscles.  相似文献   

20.
Dopamine and phenylephrine decreased the tone of the smooth muscles of the isolated rat stomach strips in concentractions of 10(-6) M and higher. The curves of the concentration-effect have the same slope. Dopamine effects are unchanged in the presence of propranolole (5.10(-6) g/ml). Phentholamine (as well as dihydroergotamine and tropaphen) shows an equal degree of antagonism towards both phenylephrine and dopamine. It is suggested that dopamine and phenylephrine relax the stomach muscles by influencing the alpha-adrenoreceptors. The latter differe from alpha-adrenoreceptors of the ejaculatory duct of rats by a high sensitivity to the blocking influence of some neuroleptics--haloperidol, trifluoperazine, chlorpromazine, pA2 for which (8.11--8.64) is of the same range as pA2 for alpha-adrenolytic drugs (7.76--8.46). The features of resemblance and difference between alpha-adrenoreceptors of the gastrointestinal tract muscles and the inhibitory dopamine receptors of the nerve cells are being discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号