首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The enzyme thermistor measures the heat produced by the action of an immobilized enzyme on a substrate present in the sample. Its application in analysis of discrete samples, e.g., in clinical chemistry, is well documented, but it has not been used so far for continuous measurements. We decribe here the application of the enzyme thermistor for continuous monitoring and control of enzyme reactors. An enzyme thermistor filled with coimmobilized glucose oxidase and catalase was used to measure the amount of glucose in the outflow from a column reactor containing immobilized lactase acting on a lactose solution pumped through the reactor. The lactose conversion was kept on a constant level, irrespective of the actual enzymatic activity in the reactor, by regulating the flow through the reactor. The experiments were carried out with aqueous solutions of lactose as well as with whey from cow's milk.  相似文献   

2.
A new low-cost β-galactosidase (lactase) preparation for whey permeate saccharification was developed and characterized. A biocatalyst with a lactase activity of 10 U/mg, a low transgalactosylase activity and a protein content of 0.22 mg protein/mg was obtained from a fermenter culture of the fungus Penicillium notatum. Factors influencing the enzymatic hydrolysis of lactose, such as reaction time, pH, temperature and enzyme and substrate concentration were standardized to maximize sugar yield from whey permeate. Thus, a 98.1% conversion of 5% lactose in whey permeate to sweet (glucose-galactose) syrup was reached in 48 h using 650 β-galactosidase units/g hydrolyzed substrate. After the immobilization of the acid β-galactosidase from Penicillium notatum on silanized porous glass modified by glutaraldehyde binding, more than 90% of the activity was retained. The marked shifts in the pH value (from 4.0 to 5.0) and optimum temperatures (from 50°C to 60°C) of the solid-phase enzyme were observed and discussed. The immobilized preparation showed high catalytic activity and stability at wider pH and temperature ranges than those of the free enzyme, and under the best operating conditions (lactose, 5%; β-galactosidase, 610–650 U/g lactose; pH 5.0; temperature 55°C), a high efficiency of lactose saccharification (84–88%) in whey permeate was achieved when lactolysis was performed both in a batch process and in a recycling packed-bed bioreactor. It seems that the promising results obtained during the assays performed on a laboratory scale make this immobilizate a new and very viable preparation of β-galactosidase for application in the processing of whey and whey permeates.  相似文献   

3.
Beta-Galactosidase (beta-D-galactoside galactohydrolase 3.2.1.23) from Curvularia inaequalis was immobilized by glutaric dialdehyde on gamma-aminopropyl triethoxysilane treated porous siliceous carrier silochrome. From the crude preparation with a specific activity of 3.1 U/mg immobilized beta-galactosidase with an activity of 113 U/g was obtained. The immobilized enzyme did not show significant changes in its enzymic properties. The column filled with the resultant preparation and used to hydrolyze lactose in milk whey maintained 50% of its initial activity after a 30-day work at 50 degrees C.  相似文献   

4.
We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead‐Glu) or carboxyl groups through acid solution (Immobead‐Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae β‐galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead‐Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10–500 mg g?1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg g?1 support. Gal immobilized on Immobead‐Glu and Immobead‐Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half‐lifes than the soluble enzyme, where the half‐lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:934–943, 2018  相似文献   

5.
A novel system for high-temperature alcoholic fermentation of whey is described. This system consists of Kluyveromyces marxianus yeast immobilized on delignified cellulosic material (DCM). The effect of pH, initial lactose concentration and temperature on the fermentation of a synthetic medium containing lactose was studied. Batch fermentations of whey were also carried out and the formation of volatile by-products was examined. The concentrations of higher alcohols were found to be in very low levels leading to a product of improved quality. The fermented whey had an improved characteristic aroma compared to unfermented whey. The possibility to use fermented whey as raw material for the production of a novel, low alcohol content drink was also investigated.  相似文献   

6.
The study of the effects of nonuniform distributions of immobilized beta-galactosidase on the overall reaction rate of the hydrolysis of lactose are presented. Diffusion inside the particles has been characterized by measuring the diffusion rates of two beta-galactosidase substrates: lactose and ONPG in a commercial silica-alumina support. Effective diffusivities have been determined by the chromatographic method under inert conditions. The results obtained for tortuosity can be explained assuming that the transport only takes place in the macropores. The distribution of the immobilized enzyme has been measured by means of confocal microscopy technique. The enzyme has been tagged with FITC and immobilized in particles of different diameters, the internal local concentrations of the enzyme have been determined with the aid of an image computer program. As expected, a more nonuniform internal profile of the enzyme was found when the particle diameter was bigger. Experiments under reaction conditions were carried out in batch reactors using lactose and ONPG as substrates and particles of the immobilized beta-galactosidase of different diameter (1 x 10(-4) to 5 x 10(-3) m) as catalyst, employing a temperature of 40 degrees C for lactose and 25 and 40 degrees C for ONPG, respectively. The mass balance inside the particle for the substrates has been solved for the internal profiles of the immobilized enzyme inside particles of different size and the enzymatic reactions considered. The calculated and the experimental effectiveness factor values were similar when particles under 2.75 x 10(-3) m in diameter were employed. For the same Thiele modulus, a particle with nonuniform distribution of enzyme showed a higher effectiveness as a catalyst than particles with a more uniform distribution.  相似文献   

7.
Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced.  相似文献   

8.
Recycle batch fermentations using immobilized cells of Propionibacterium acidipropionici were studied for propionate production from whey permeate, de-lactose whey permeate, and acid whey. Cells were immobilized in a spirally wound fibrous sheet packed in a 0.5-L column reactor, which was connected to a 5-L stirred tank batch fermentor with recirculation. The immobilized cells bioreactor served as a breeder for these recycle batch fermentations. High fermentation rates and conversions were obtained with these whey media without nutrient supplementation. It took approximately 55 h to ferment whey permeate containing approximately 45 g/L lactose to approximately 20 g/L propionic acid. Higher propionate concentrations can be produced with various concentrated whey media containing more lactose. The highest propionic acid concentration obtained with the recycle batch reactor was 65 g/L, which is much higher than the normal maximum concentration of 35 to 45 g/L reported in the literature. The volumetric productivity ranged from 0.22 g/L . h to 0.47 g/L . h, depending on the propionate concentration and whey medium used. The corresponding specific cell productivity was 0.033 to 0.07 g/L . g cell. The productivity increased to 0.68 g/L . h when whey permeate was supplemented with 1% (w/v) yeast extract. Compared with conventional batch fermentation, the recycle batch fermentation with the immobilized cell bioreactor allows faster fermentation, produces a higher concentration of product, and can be run continually without significant downtime. The process also produced similar fermentation results with nonsterile whey media. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Summary Fungal -galactosidase was immobilized in polyvinylalcohol gel formed in pores of contton material. Temperature and pH effects on the activity of free and immobilized enzymes were studied. The optimum temperatures of free and immobilized enzymes were 60° C and 55° C respectively. The pH optimum ranged from 4.5 to 5.0 for both enzymes. The thermal stability of the immobilized -galactosidase was slightly higher. The Km values for soluble and immobilized enzymes were respectively 1.9 mM and 2.5 mM. The optimization of conditions for a highly effective hydrolysis of 4% lactose solution and reusability of the immobilized enzyme resulted in 75% hydrolysis after 5–6 h. The degree of conversion decreased to 50% after 30 repeated runs. The capacity of the immobilized enzyme to hydrolyze lactose in whey was also studied.  相似文献   

10.
Neutral β-galactosidase from Kluyveromyces fragilis was immobilized on silanized porous glass modified by glutaraldehyde binding, with retention of more than 90% of its activity. Marked shifts in optimum pH (from 7.0 to 6.0) and temperature (from 35°C to 50°C) of the solid-phase enzyme were observed together with high catalytic activity and reasonable stability at wider pH and temperature ranges than those of the free enzyme. Highly efficient lactose saccharification (86–90%) in whey permeate was achieved both in a batch process and in a recycling packed-bed bioreactor.  相似文献   

11.
Continuous production of propionate from whey lactose by Propionibacterium acidipropionici immobilized in a novel fibrous bed bioreactor was studied. In conventional batch propionic acid fermentation, whey permeate without nutrient supplementation was unable to support cell growth and failed to give satisfactory fermentation results for over 7 days. However, with the fibrous bed bioreactor, a high fermentation rate and high conversion were obtained with plain whey permeate and de-lactose whey permeate. About 2% (wt/vol) propionic acid was obtained from a 4.2% lactose feed at a retention time of 35 to 45 h. The propionic acid yield was approximately 46% (wt/vol) from lactose. The optimal pH for fementation was 6.5, and lower fermentation rates and yields were obtained at lower pH values. The optimal temperature was 30 degrees C, but the temperature effect was not dramatic in the range of 25 to 35 degrees C. Addition of yeast extract and trypticase to whey permeate hastened reactor startup and increased the fermentation rate and product yields, but the addition was not required for long-term reactor performance. The improved fermentation results with the immobilized cell bioreactor can be attributed to the high cell density, approximately 50 g/L, attained in the bioreactor, Cells were immobilized by loose attachement to fiber surfaces and entrapment in the void spaces within the fibrous matrix, thus allowing constant renewal of cells. Consequently, this bioreactor was able to operate continuously for 6 months without encountering any clogging, degeneration, or contamination problems. Compared to conventional batch fermentors, the new bioreactor offers many advantages for industrial fermentation, including a more than 10-fold increase in productivity, acceptance of low-nutrient feedstocks such as whey permeate, and resistance to contamination. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Extracellular lactase (beta-d-galactosidase, EC 3.2.1.23) was prepared as an ethanol precipitate from a culture of Fusarium moniliforme grown on whey. The enzyme functioned optimally at pH 3.8 to 5.0 and at 50 to 60 degrees C on both o-nitrophenyl-beta-d-galactopyranoside (ONPG) and lactose. The activation energy of the enzymic hydrolysis of ONPG and lactose in the range of 20 to 55 degrees C was 8,500 and 7,200 cal (ca. 3.57 x 10 and 3.02 x 10 J)/mol, respectively. The K(m) values were 4.4 and 12.4 mM for ONPG and lactose, respectively. At optimum pH, the enzyme lost half of its activity when it was heated at 50 degrees C for 6 h; at the same pH, the loss was only 5% when the enzyme was heated at 37 degrees C for 6 h. At optimum conditions, 50% of the lactose in whey was hydrolyzed by 10 U of this enzyme in 50 h.  相似文献   

13.
Biocatalyst inactivation is inherent to continuous operation of immobilized enzyme reactors, meaning that a strategy must exist to ensure a production of uniform quality and constant throughput. Flow rate can be profiled to compensate for enzyme inactivation maintaining substrate conversion constant. Throughput can be maintained within specified margins of variation by using several reactors operating in parallel but displaced in time. Enzyme inactivation has been usually modeled under non-reactive conditions, leaving aside the effect of substrate and products on enzyme stability. Results are presented for the design of enzyme reactors under the above operational strategy, considering first-order biocatalyst inactivation kinetics modulated by substrate and products. The continuous production of hydrolyzed-isomerized whey permeate with immobilized lactase and glucose isomerase in sequential packed-bed reactors is used as a case study. Kinetic and inactivation parameters for immobilized lactase have been determined by the authors; those for glucose isomerase were taken from the literature. Except for lactose, all other substrates and products were positive modulators of enzyme stability. Reactor design was done by iteration since it depends on enzyme inactivation kinetics. Reactor performance was determined based on a preliminary design considering non-modulated first-order inactivation kinetics and confronted to such pattern. The new pattern of inactivation was then used to redesign the reactor and the process repeated until reactor performance (considering modulation) matched the assumed pattern of inactivation. Convergence was very fast and only two iterations were needed.  相似文献   

14.
The fermentation kinetics of methane production from whey permeate in a packed bed immobilized cell bioreactor at mesophilic temperatures and pHs around neutral was studied. Propionate and acetate were the only two major organic intermediates found in the methanogenic fermentation of lactose. Based on this finding, a three-step reaction mechanism was proposed: lactose was first degraded to propionate, acetate, CO(2), and H(2) by fermentative bacteria; propionate was then converted to acetate by propionate-degrading bacteria; and finally, CH(4) and CO(2) were produced from acetate, H(2), and CO(2) by methanogenic bacteria. The second reaction step was found to be the rate-limiting step in the overall methanogenic fermentation of lactose. Monod-type mathematical equations were used to model these three step reactions. The kinetic constants in the models were sequentially determined by fitting the mathematical equations with the experimental data on acetate, propionate, and lactose concentrations. A mixed-culture fermentation model was also developed. This model simulates the methanogenic fermentation of whey permeate very well.  相似文献   

15.
In the course of exploring new microbial sources of extracellular beta-d-galactosidase (EC. 3.2.1.23), Alternaria alternata was found to excrete elevated quantities of a thermostable form of the enzyme when cultivated in whey growth medium. Optimum cultural conditions for maximum enzyme production were a whey lactose concentration of 6%, supplementation of the medium with 0.050 M (NH(4))(2)SO(4), an inoculum size of 10 conidia per ml, and a cultivation time at 28 to 30 degrees C of 5 days. The fungus utilized whey lactose for the production of the enzyme most efficiently, and the observed maximum yield, 280 nanokatals of hydrolyzed o-nitrophenyl-beta-d-galactopyranoside per g of whey lactose, was comparable to maximum yields reported for certain commercial fungi. The optimum pH and temperature of the enzymatic reaction were 4.5 to 5.5 and 60 to 70 degrees C, respectively, and the enzyme lost half of its activity when heated at 65 degrees C for 84 min. These properties make the enzyme particularly suitable for processing acid and less-acid (pH 5 to 6) dairy products and by-products.  相似文献   

16.
Hydrolysis of whey lactose using CTAB-permeabilized yeast cells   总被引:1,自引:0,他引:1  
Disposal of lactose in whey and whey permeates is one of the most significant problems with regard to economics and environmental impact faced by the dairy industries. The enzymatic hydrolysis of whey lactose to glucose and galactose by β-galactosidase constitutes the basis of the most biotechnological processes currently developed to exploit the sugar content of whey. Keeping this in view, lactose hydrolysis in whey was performed using CTAB permeabilized Kluyveromyces marxianus cells. Permeabilization of K. marxianus cells in relation to β-galactosidase activity was carried out using cetyltrimethyl ammonium bromide (CTAB) to avoid the problem of enzyme extraction. Different process parameters (biomass load, pH, temperature, and incubation time) were optimized to enhance the lactose hydrolysis in whey. Maximum hydrolysis (90.5%) of whey lactose was observed with 200 mg DW yeast biomass after 90 min of incubation period at optimum pH of 6.5 and temperature of 40 °C.  相似文献   

17.
Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.  相似文献   

18.
The capacity of immobilized cells of propionic bacteria to synthesize organic acids was examined. Propionibacterium shermanii cells incorporated into polyacrylamide gel were capable to synthesize propionic, acetic and pyruvic acids in the flow system. As a carbon source glucose, lactate-Na or whey lactose was used. The greatest amount of the acids was synthesized with the use of lactate-Na. The life-time of the biocatalyst (immobilized cells) can be increased by its reactivation with a nutrient medium required for optimal cell proliferation.  相似文献   

19.
Thermostable β-glucosidase from Sulfolobus shibatae was immobilized on silica gel modified or not modified with 3-aminopropyl-triethoxysilane using transglutaminase as a cross-linking factor. Obtained preparations had specific activity of 3883 U/g of the support, when measured at 70 °C using o-nitrophenyl β-d-galactopyranoside (GalβoNp) as substrate. The highest immobilization yield of the enzyme was achieved at pH 5.0 in reaction media. The most active preparations of immobilized β-glucosidase were obtained at a transglutaminase concentration of 40 mg/ml at 50 °C. The immobilization was almost completely terminated after 100 min of the reaction and prolonged time of this process did not cause considerable changes of the activity of the preparations. The immobilization did not influence considerably on optimum pH and temperature of GalβoNp hydrolysis catalyzed by the investigated enzyme (98 °C, pH 5.5). The broad substrate specifity and properties of the thermostable β-glucosidase from S. shibatae immobilized on silica-gel indicate its suitability for hydrolysis of lactose during whey processing.  相似文献   

20.
Kluyveromyces fragilis immobilized in calcium alginate gel was compared to Saccharomyces cerevisiae coimmobilized with beta-galactosidase, for continuous ethanol production from whey permeate in packed-bed-type columns. Four different whey concentrations were studied, equivalent to 4.5, 10, 15, and 20% lactose, respectively. In all cases the coimmobilized preparation produced more ethanol than K. fragilis. The study went on for more than 5 weeks. K. fragilis showed a decline in activity after 20 days, while the coimmobilized preparation was stableduring the entrire investigation. Under experimental conditions theoretical yields of ethanol were obtained from 4.5 and 10% lactose substrates with the coimmobilized system. Using 15% lactose substrate, theoretical yields were only obtained when a galactose-adapted immobilized S. cerevisiae column was run in series with the coimmobilized column. Then a maximum of 71 g/L ethanol was produced with a productivity of 2.5 g/L h. The coimmobilized column alone gave a maximum ethanol concentration of 52 g/L with a productivity of 4.5 g/L h, whereas immobolized K. fragilis only produced 13 g/L ethanol with a productivity of 1.1 g/L h. It was not possible to obtain theoretical yields of ethanol from the highest substrate concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号