首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic hydrolysis of insoluble soybean protein by a protease enzyme produced by Penicillium duponti K 1104, was investigated in a batch reactor. The reaction conditions were 30–55°C and pH 3.4–3.7. The mechanism of solubilization of the insoluble protein by the Penicillium duponti enzyme was deduced from a series of experiments. Kinetic models were developed that involved adsorption followed by peptic digestion of protein, inhibition of low-molecular-weight peptides, and enzyme deactivation. The uncoupled kinetic parameters were estimated using the Marquardt nonlinear parameter estimation algorithm. A bang–bang production of soluble and partially soluble protein is suggested for higher productivity. The essential amino acids pattern of the enzyme-Hydrolyzed soy protein was comparable with the unhydrolyzed protein isolate. Aggregation of the soluble protein for an extended time was observable. The low-molecular-weight soluble protein was incorporated into noncarbonated beverages. The amount of protein that could be incorporated into a can of 355 ml noncarbonated beverage, without observable changes in the optical density and also aggregation of the protein, was 2.5 g soluble protein. Beverages with caramel color showed excessive decrease in optical density and precipitation. The kinetics and diffusion in a multipore immobilized-enzyme recycle reactor will be considered in part II of this series.  相似文献   

2.
β-galactosidase from E. coli (β-D -galactose galactohydrolase, EC 3.2.1.23) has been entrapped in a crosslinked 2-hydroxyethyl methacrylate gel with a 35% retention of activity. The kinetic behavior of the gel-entrapped enzyme has been studied in a recirculation reactor system, the substrate being o-nitrophenyl-βhyphen;D - galactopyranoside. Kinetic constants were determined for particle sizes ranging from 69 to 231 μm in diameter and compared to those of the free enzyme. External diffusion effects were eliminated by operating at high recirculation flow rates. A fourfold increase in Km(app) was observed for the 231 μm particles, consistent with existing theoretical treatments for internal diffusion effects. An Arrhenius plot of rate data showed significant curvature at higher temperatures, which was attributed to the effects of internal diffusion. The pH–activity profile of the gel-entrapped enzyme was bell-shaped at high substrate concentration and, in contrast to the free enzyme, could be fitted to the titration curve of two ionizable groups, a basic group having a pK of 8.6. The gel-entrapped enzyme had a higher pH optimum and retained a larger percentage of its maximal activity at alkaline pH than the free enzyme; its pH stability at high pH was also much better. The thermal stability of the gel-entrapped enzyme was studied and found to be 14 days at 22°C and 65 min at 45°C.  相似文献   

3.
A column reactor with an annular cross section was formed by rolling up DEAE cellulose paper and a screening spacer. Glucoamylase was attached by ion adsorption. For the spacer used, pressure drop was very low, suggesting that this form may be useful with feed streams that are not completely particle-free. Tests of this reactor at the high substrate concentrations characteristic of commercial reactors showed very little diffusional resistance, exhibiting zero-order behavior over most of the concentration range. At low concentrations, the reactor had an apparent “half-order” behavior caused by diffusional limitation in the paper. In this range, flow rate influenced the reaction rate, showing that mass transfer in the main stream also is a contributing factor in this range. Because of the high concentrations and the low Michaelis constant (0.0011 M) the reactor does not show first-order behavior, even at very high conversions. The design of a plant-scale reactor was formulated from these data. The increase in the quantity of enzyme necessary to compensate for the effects of diffusion was only a few percent. Two reactors were formed with sheets nonporous to the enzyme, binding the enzyme with cyanogen bromide after forming the reactor. The amount of enzyme bound was about one monolayer, and there appeared to be no diffusional limitations, even at low substrate concentrations.  相似文献   

4.
Studies have been performed in a tubular flow reactor to characterize the deactivation of immobilized glucose oxidase. The effects of oxygen concentration in the range of 0.09 to 0.467mM and hydrogen peroxide concentrations in the range of 0.1 to 10mM were studied. A simple mathematical model assuming first-order reaction and deactivation was found to describe the deactivation behavior adequately. The deactivation rate constant was found to increase with increasing levels of feed oxygen. Hydrogen peroxide was found to deactivate the enzyme severely and the deactivation rate constants were higher than those for oxygen deactivation. The influence of external and internal diffusion effects on the deactivation rate constant were examined. Although diffusional restrictions were negligible for oxygen transfer to the pellet, they were significant for transfer of hydrogen peroxide to the bulk stream. Increasing deactivation rates. Severe internal diffusion limitations were observed for the glucose oxidase system. However, for particle sizes in the range of 500 to 2000 μm, no effect on the rate of deactivation of the enzyme was observed.  相似文献   

5.
Using immobilized glucose isomerase, the effects of superficial velocity of the reaction solution flowing through a packed-bed reactor on the apparent kinetic constants of reversible reaction system were studied. The results showed that the apparent kinetic constants, both Vm″ and Km″, of the forward reaction varied significantly as the superficial velocity is changed, whereas those of the reverse reaction varied only slightly. Using the kinetic data determined experimentally, computer simulation of the enzyme reactor performance was carried out, and the importance of the external mass transfer in the proximity of immobilized-enzyme particles was recognized. The reactor performance, expressed in terms of productivity, was examined as a function of the reactor height-to-diameter ratio, H/D. The productivity of the reactor system goes through a maximum value at a H/D ratio of about 1.6. and decreases as the H/D ratio increases. Theoretical analysis of the reaction kinetics of immobilized-enzyme system that has reversible reaction kinetics is also presented. The experimental results showed good agreement with the results found from the theoretical analysis and the computer simulation studies. Based on the principles of the methods and the results presented in this paper, it is anticipated that one can predict the optimal design and operating conditions for the glucose isomerase reactor system and that application of the results could be extended to other enzyme systems with reversible reaction kinetics.  相似文献   

6.
Experimental investigation is by far the most effective approach for studying the behavior of physical systems. However, an enzymatic solubilization of vegetable protein is a complex combination of intrinsic problems, of which many are not easily adaptable to experimental investigation. Experimental designs to study enzyme vegetable protein reactions yield data which describe the extramembraneous activity of the immobilized enzyme. In a continuous recycle immobilized enzyme reactor, the microenvironment concentration of the substrate or product in the membrane phase, or the concentrations along the reactor axial length in the bulk phase are not discernible to the experimenter. However, the knowledge of such concentration profiles is important in weighing the significance of such factors as intermembrane diffusion, enzyme loading, wet membrane size, and the mode of operation of the reactor. The simulation of mathematical models, which describe the physical system within the constraints imposed, yields information which is vital to the understanding of the process occurring in the reactor. The kinetics and diffusion of an immobilized thermophilic Penicillium duponti enzyme at pH 3.4-3.7 and 50 degrees C was modeled mathematically. The kinetic parameters were evaluated by fitting a model to experimental data using nonlinear regression analysis. Simulation profiles of the effects of reactor geometry, substrate concentration, membrane thickness, and enzyme leading on the hydrolysis rate are presented. From the profiles generated by the mathematical model, the best operational reactor strategy is recommended.  相似文献   

7.
8.
The kinetic behavior of a system of multiple enzyme in solution has been studied in a variable volume batch reactor at pH 5, controlled dissolved oxygen concentration, and T = 30°C. The enzymes used were glucoamylase (R. delemar), glucose oxidase (A. niger), and gluconolactonase (A. niger), all of which are important commercial biocatalysts, and a disaccharide was employed as the starting substrate. This study includes the basic kinetic properties of individual enzymes and interactions between components of the reaction mixture. Classical Michaelis–Menten single substrate or two substrate kinetic with parameters based on initial rate data predict correctly the batch time course of the sequential reaction network.  相似文献   

9.
Glucose isomerase in the form of heat-treated whole-cell enzyme prepared from Streptomyces phaeochromogenus follows the reversible single-substrate reaction kinetics in isomerization of glucose to fructose. Based on the Kinetic constants determined and the mathematical model of the reactor system developed, the preformance of a plug-flow-type continuous-enzyme reactor system was studied experimentally and also simulated with the aid of a computer for the ultimate objective of optimization of the glucose isomerase reactor system. The enzyme decay function for both the enzyme storage and during the use in the continuous reactor, was found to follow the first-order decay kinetics. When the enzyme decay function is taken into consideration, the ideal homogeneous enzyme reactor kinetics provided a satisfactory working model without further complicatin of the mathematical model, and the results of computer simulation were found to be in good agreement with the experimental results. Under a given set of constraints the performance of the continuous glucose isomerase reactor system can be predicted by using the computer simulation method described in this paper. The important parameters studied for the optimization of reactor operation were enzyme loading, mean space time of the reactor, substrate feed concentration, enzyme decay constants, and the fractional conversion, in addition to the kinetic constants. All these parameters have significant effect on the productivity. Some unique properties of the glucose isomerization reaction and its effects on the performance of the continuous glucose isomerase reactor system have been studied and discussed. The reaction kinetics of glucose isomerase and the effects of both the enzyme loading and the changes in reaction rate within a continuous reactor on the productivity are all found to be of particular importance to this enzyme reactor system.  相似文献   

10.
Urate oxidase from hog liver (urate: oxygen oxidoreductase, EC 1.7.33) has been entrapped in a crosslinked 2-hydroxyethyl methacrylate gel with a 47% retention of activity. The kinetic behavior of the gel entrapped enzyme has been studied in a slurried tank reactor using uric acid as substrate. Internal diffusion effects were found to be negligible for particle sizes below 128 mum. A threefold increase in Km (app) was observed for the 128 mum particles and attributed to diffusional effects. The pH activity profile of the gel entrapped enzyme was bell-shaped at high substrate concentration and could be fitted to a titration curve of two ionizable groups, a basic group having a pK of 7.9 and an acidic group with a pK of 11.0. The gel entrapped enzyme showed excellent stability between pH 6.5 and 10.5.  相似文献   

11.
A differential microrecirculation reactor was developed for kinetic analysis of both soluble and immobilized enzymes. The reactor system was easliy fabricated with in the laboratory from readily available materials. The disposable, small reactors allowed for in situ weight determination of the enzyme beads. Routinely, only a 1 ml liquid volume of substrate was used for each kinetic assay. The reactor system was also used for determination of partition coefficients. Both uses of the reactor system required only 5–10 min for completion of a given determination.  相似文献   

12.
The kinetic properties of a continuous enzyme reactor containing rabbit muscle lactate dehydrogenase, horse liver alcohol dehydrogenase and poly(ethylene glycol)-bound NAD (PEG-NAD) were investigated experimentally and theoretically. The enzymes and PEG-NAD were retained in the reactor with an ultrafiltration membrane, and the substrates (pyruvate and ethanol) were fed continuously. The reactions of the dehydrogenases were coupled by the recycling of the cofactor. The steady-state concentration of L-lactate, one of the products, was measured under different experimental conditions and compared with the corresponding theoretical value. The theoretical value was calculated based on a simplified ordered bi-bi mechanism for the individual enzyme reactions, of which kinetic constants were determined by independent kinetic studies. Differences were found between the kinetic constants of the enzymes for NAD(H) and PEG-NAD(H). The steady-state values obtained by continuous operation were lower than those calculated, possibly due to the simplification made for the kinetic model; but there was general agreement between them in the dependence on the experimental conditions. The steady-state behavior of the enzyme reactor was explained semi-quantitatively by the simple kinetic model.  相似文献   

13.
Acid anhydrides were used as highly reactive and non-water-producing acyl donors for hydrolase-catalyzed enantioselective esterification. Efficient kinetic resolution of dl-menthol has been achieved via lipase-catalyzed enantioselective esterification in cyclohexane when propionic anhydride as an acyl donor was continuously fed into a reactor containing dl-menthol and Candida cylindracea lipase OF 360, while a high concentration of the acid anhydride in a batch reaction system with a dehydrated organic solvent did not facilitate the reaction, because water necessary for the enzyme function was consumed by the competing hydrolysis of the anhydride catalyzed by the same enzyme. The efficiency of this fed-batch reaction system using acid anhydride was higher and the enzyme stability in repeated use was much better than those of conventional batch and fed-batch reaction systems using propionic acid as an acyl donor. The optical purity (more than 98% e.e.) of the l-menthyl ester produced in the fed-batch system using the anhydride was comparable to that in the system using the corresponding acid. *** DIRECT SUPPORT *** AG903062 00002  相似文献   

14.
The effect of temperature and pH on kinetic behavior of α-galactosidase of Mortierella vinacea was investigated on the hydrolysis of p-nitrophenyl-α-D -galactopyranoside (PNPG). A very unusual kinetic behavior was observed for the soluble α-galactosidase i.e., substrate inhibition diminished gradually with increasing temperature or near the neutral pH range, and the kinetics approached the ordinary Michaelis-Menten (MM) type. On the other hand, with decreasing temperature or in acidic pH range, substrate inhibition was accelerated. Therefore, Arrhenius plots based on the initial reaction rate did not give straight lines. Furthermore, the slope in the Arrhenius plot changed with substrate concentration, which would make the determination of a characteristic value using conventional methods meaningless. However, the Arrhenius plots of individual kinetic parameters in the rate equation resulted in straight lines in the temperature range 15 to 50°C. From this, the drastic change in kinetic behavior could be explained in connection with the temperature and pH dependence of kinetic parameters in the model. For mold pellets (whole-cell enzyme), however, the influence of temperature and pH was less apparent than that of soluble enzyme because of the limitation in intraparticle diffusion. By using the rate equation that was determined for soluble enzyme and the theoretically derived effectiveness factor, the overall reaction rate for mold pellets at various temperature and pH could be predicted to some extent.  相似文献   

15.
Whole-cell glucose isomerase from a Streptomyces spp. was immobilized by entrapment in gelatin matrices crosslinked with glutaraldehyde. The resultant immobilized enzyme preparation had up to 40% recovery yield of the activity and showed relatively long stabilities during storage and the isomerizing reaction. The storage half-life of the preparation was 19 months at 5°C and the half-life of the enzyme during operation was 260 days in the presence of 1 mM Co2+ and 80 days in the absence of the metal ion. Optimum pH and temperature were 7.5 and 70–75°C, respectively. The Km values for glucose and fructose were 0.29 and 0.46 m, respectively, with a maximum theoretical conversion yield of 56%. The simulation results based on the reversible one-substrate enzyme kinetic model agreed well with the experimental data obtained from a batch reactor. The continuous operation of packed bed reactors demonstrated that some effects of the external film diffusion resistance were apparent at low flow rates of the substrate feed solution, whereas the internal pore diffusion resistance was negligible up to the pellet size used in this work.  相似文献   

16.
Catalytically active chymotrypsin derivatives can be synthesized from cyanogen bromide-activated Sephadex G200. In most cases the apparent catalytic activity of the covalently fixed enzyme appears to be considerably decreased in comparison to the activity of the free enzyme. However, by proper choice of the reaction conditions for the activation, enzyme conjugates with high activity, even toward a high molecular substrate, can be synthesized. These latter derivatives may be of practical value for the digestion of proteins. Crosslinked dextran as carrier was chosen because of the possbility, of digesting it enzymatically by dextranase. Sephadex G200, if activated at or below pH 10.3, will combine with chymotrypsin to yield digestable products. Changes of apparent kinetic properties of the fixed enzyme can accordingly be studied during the degradation process. On the solubilization of the insoluble conjugate, a total recovery of activity of the fixed enzyme can be obtained in cases the carrier has been activated by a sufficiently mild procedure. The high apparent Michaelis constant Km of insoluble chymotrypsin–Sephadex toward N-acetyl-L -tyrosine ethyl ester shifts back on solubilization to the value of free chymotrypsin. We therefore propose that the decreased activity of an insoluble chymotrypsin–Sephadex is due to diffusional effects shown by the gel matrix toward the substrate. Similarly observed shifts in optimum pH are explained by accumulation of hydrogen ions in the gel. The organic chemical reaction used for coupling the enzyme to the polymer can therefore be performed without decreasing the inherent catalytic activity of the enzyme. The route described for fixing chymotrypsin to Sephadex followed by solubilization of the products may be useful as a synthetic method for binding proteins, peptides, and other amino group-containing substances to soluble carriers, e.g., for the modification of pharmaceuticals.  相似文献   

17.
Laccase from Rhus vernicifera was immobilized on a polypropylene membrane chemically modified with chromic acid. Ethylenediamine and glutaraldehyde were used as spacer and bifunctional coupling agent, respectively. Phenol was used as substrate.To know how the immobilization procedures affected the enzyme reaction rate the catalytic behavior of soluble and insoluble laccase was studied under isothermal conditions as a function of pH, temperature and substrate concentration. From these studies, two main singularities emerged: (i) the narrower pH–activity profile of the soluble enzyme in comparison to that of the insoluble counterpart and (ii) the increase in pH and thermal stability of the insoluble enzyme.The laccase catalytic behavior was also studied in a non-isothermal bioreactor as a function of substrate concentration and size of the applied transmembrane temperature difference. It was found that, under non-isothermal conditions and keeping constant the average temperature of the bioreactor, the enzyme reaction rate linearly increased with the increase of the temperature difference.  相似文献   

18.
A mathematical model has been developed for predicting the performance and simulation of a packed bed immobilized enzyme reactor performing lactose hydrolysis, which follows Michaelis‐Menten kinetics with competitive product (galactose) inhibition. The performance characteristics of a packed bed immobilized enzyme reactor have been analyzed taking into account the effects of various diffusional phenomena like axial dispersion and external mass transfer limitations. The model design equations are then solved by Galerkin's method and orthogonal collocation on finite elements. The effects of external mass transfer and axial dispersion have been studied and their effects were shown to reduce the external effectiveness factor. The effects of product inhibition have been investigated at different operating conditions correlated at different regimes using dimensionless moduli (St, γ, θ, Da)1). The product inhibition was shown to reduce the substrate conversion, and, additionally, to decrease the effectiveness factor when Da > Daxo, however, it increases the effectiveness factor when Da < Daxo. The effectiveness factor is found to be independent of the product inhibition at a crossover point at which Daxo is defined. Effects of St and Pe have been investigated at different kinetic regimes and the results show that their effects have a strong dependency on the kinetic parameters θ, γ (i.e., Km/Kp), and Daxo.  相似文献   

19.
Summary The enzyme glucose oxidase (E.C. 1.1.3.4) was immobilized on collagen — a proteinaceous material found in biological systems as a structural material for a wide variety of cells and membranes. The novel technique of electrocodeposition, which utilizes the principles of electrophoresis, was used to deposit the enzyme-collagen complex on stainless steel helical supports. This technique has been developed in our laboratory. The mechanism of complex formation between collagen and enzyme involves multiple salt linkages, hydrogen bonds and van der Waals interactions.As a first step toward examining its feasible technical use, the kinetic behavior of the collagen-supported glucose oxidase was studied in a batch recycle type reactor and was compared with that for the soluble form. A novel reactor configuration consisting of multiple concentric electrocodeposited helical coils was used. The reactor was found to attain a stable level of activity which was maintained for several months under cyclic testing. The optimum levels of pH and temperature for the immobilized form of the enzyme were the same as those of the soluble enzyme, but the immobilized enzyme was more active than the soluble form at higher temperatures and pH. The values of the Michaelis-Menten parameters indicate that the overall reaction rate of the immobilized enzyme may be partially restricted by bulk and matrix diffusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号