首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MgADP binding to the allosteric site enhances the affinity of Escherichia coli phosphofructokinase (PFK) for fructose 6-phosphate (Fru-6-P). X-ray crystallographic data indicate that MgADP interacts with the conserved glutamate at position 187 within the allosteric site through an octahedrally coordinated Mg(2+) ion [Shirakihara, Y., and Evans, P. R. (1988) J. Mol. Biol. 204, 973-994]. Lau and Fersht reported that substituting an alanine for this glutamate within the allosteric site of PFK (i.e., mutant E187A) causes MgADP to lose its allosteric effect upon Fru-6-P binding [Lau, F. T.-K., and Fersht, A. R. (1987) Nature 326, 811-812]. However, these authors later reported that MgADP inhibits Fru-6-P binding in the E187A mutant. The inhibition presumably occurs by preferential binding to the inactive (T) state complex of the Monod-Wyman-Changeux two-state model [Lau, F. T.-K., and Fersht, A. R. (1989) Biochemistry 28, 6841-6847]. The present study provides an alternative explanation of the role of MgADP in the E187A mutant. Using enzyme kinetics, steady-state fluorescence emission, and anisotropy, we performed a systematic linkage analysis of the three-ligand interaction between MgADP, Fru-6-P, and MgATP. We found that MgADP at low concentrations did not enhance or inhibit substrate binding. Anisotropy shows that MgADP binding at the allosteric site occurred even when MgADP produced no allosteric effect. However, as in the wild-type enzyme, the binding of MgADP to the active site in the mutant competitively inhibited MgATP binding and noncompetitively inhibited Fru-6-P binding. These results clarified the mechanism of a three-ligand interaction and offered a nontraditional perspective on allosteric mechanism.  相似文献   

2.
Y J Farrar  G M Carlson 《Biochemistry》1991,30(42):10274-10279
The phosphorylase kinase holoenzyme from skeletal muscle is composed of a catalytic and three different regulatory subunits. Analysis of the kinetic mechanism of the holoenzyme is complicated because both the natural substrate phosphorylase b and also phosphorylase kinase itself have allosteric binding sites for adenine nucleotides. In the case of the kinase, these allosteric sites are not on the catalytic subunit. We have investigated the kinetic mechanism of phosphorylase kinase by using its isolated catalytic gamma-subunit (activated by calmodulin) and an alternative peptide substrate (SDQEKRKQISVRGL) corresponding to the convertible region of phosphorylase b, thus eliminating from our system all known allosteric binding sites for nucleotides. This peptide has been previously employed to study the kinetic mechanism of the kinase holoenzyme before the existence of the allosteric sites on the regulatory subunits was suspected [Tabatabai, L. B., & Graves, D. J. (1978) J. Biol. Chem. 253, 2196-2202]. This peptide was determined to be as good an alternative substrate for the isolated catalytic subunit as it was for the holoenzyme. Initial velocity data indicated a sequential kinetic mechanism with apparent Km's for MgATP and peptide of 0.07 and 0.47 mM, respectively. MgADP used as product inhibitor showed competitive inhibition against MgATP and noncompetitive inhibition against peptide, whereas with phosphopeptide as product inhibitor, the inhibition was competitive against both MgATP and peptide. The initial velocity and product inhibition studies were consistent with a rapid equilibrium random mechanism with one abortive complex, enzyme-MgADP-peptide. The substrate-directed, dead-end inhibitors 5'-adenylyl imidodiphosphate and Asp-peptide, in which the convertible Ser of the alternative peptide substrate was replaced with Asp, were competitive inhibitors toward their like substrates and noncompetitive inhibitors toward their unlike substrates, further supporting a random mechanism, which was also the conclusion from the report cited above that used the holoenzyme.  相似文献   

3.
The kinetic mechanism of protein kinase C (PKC) was analyzed via inhibition studies using the product MgADP, the nonhydrolyzable ATP analogue adenosine 5'-(beta,gamma-imidotriphosphate) (MgAMPPNP), the peptide antagonist poly(L-lysine), and several naturally occurring ATP analogues that are produced in rapidly growing cells, i.e., the diadenosine oligophosphates (general structure: ApnA; n = 2-5). By use of histone as the phosphate acceptor, the inhibition of PKC by MgAMPPNP and MgADP was found to be competitive vs MgATP (suggesting that these compounds bind to the same enzyme form), whereas their inhibition vs histone was observed to be noncompetitive. In contrast, the inhibition by poly(L-lysine) appeared competitive vs histone but uncompetitive vs MgATP, which is consistent with a model wherein MgATP binding promotes the binding of poly(L-lysine) or histone. With the diadenosine oligophosphates, the degree of PKC inhibition was found to increase according to the number of intervening phosphates. The diadenosine oligophosphates Ap4A and Ap5A were the most effective antagonists of PKC, with Ap5A being approximately as potent as MgADP and MgAMPPNP. However, as opposed to MgADP and MgAMPPNP, Ap4A and Ap5A appear to act as noncompetitive inhibitors vs both MgATP and histone, suggesting that they can interact at several points in the reaction pathway. These studies support the concept of a steady-state mechanism where MgATP binding preferentially precedes that of histone, followed by the release of phosphorylated substrate and MgADP. Furthermore, these results indicate a differential interaction of the diadenosine oligophosphates with PKC, when compared to other adenosine nucleotides.  相似文献   

4.
The complexes of pig muscle 3-phosphoglycerate kinase with the substrate MgATP and with the nonsubstrate Mg(2+)-free ATP have been characterized by binding, kinetic, and crystallographic studies. Comparative experiments with ADP and MgADP have also been carried out. In contrast to the less specific and largely ionic binding of Mg(2+)-free ATP and ADP, specific occupation of the adenosine binding pocket by MgATP and MgADP has been revealed by displacement experiments with adenosine and anions, as well as supported by isothermal calorimetric titrations. The Mg(2+)-free nucleotides similarly stabilize the overall protein structure and restrict the conformational flexibility around the reactive thiol groups of helix 13, as observed by differential scanning microcalorimetry and thiol reactivity studies, respectively. The metal complexes, however, behave differently. MgADP, but not MgATP, further increases the conformational stability with respect to its Mg(2+)-free form, which indicates their different modes of binding to the enzyme. Crystal structures of the binary complexes of the enzyme with MgATP and with ATP (2.1 and 1.9 A resolution, respectively) have shown that the orientation and interaction of phosphates of MgATP largely differ not only from those of ATP but also from the previously determined ones of either MgADP [Davies, G. J., Gamblin, S. J., Littlechild, J. A., Dauter, Z., Wilson, K. S., and Watson, H. C. (1994) Acta Crystallogr. D50, 202-209] or the metal complexes of AMP-PNP [May, A., Vas, M., Harlos, K., and Blake, C. C. F. (1996) Proteins 24, 292-303; Auerbach, G., Huber, R., Grattinger, M., Zaiss, K., Schurig, H., Jaenicke, R., and Jacob, U. (1997) Structure 5, 1475-1483] and are more similar to the interactions formed with MgAMP-PCP [Kovári, Z., Flachner, B., Náray-Szabó, G., and Vas, M. (2002) Biochemistry 41, 8796-8806]. Mg(2+) is liganded to both beta- and gamma-phosphates of ATP, while beta-phosphate is linked to the conserved Asp218, i.e., to the N-terminus of helix 8, through a water molecule; the known interactions of either MgADP or the metal complexes of AMP-PNP with the N-terminus of helix 13 and with Asn336 of beta-strand J are absent in the case of MgATP. Fluctuation of MgATP phosphates between two alternative sites has been proposed to facilitate the correct positioning of the mobile side chain of Lys215, and the catalytically competent active site is thereby completed.  相似文献   

5.
The effects of the allosteric ligands UMP, IMP, and ornithine on the partial reactions catalyzed by Escherichia coli carbamyl phosphate synthetase have been examined. Both of these reactions, a HCO3(-)-dependent ATP synthesis reaction and a carbamyl phosphate-dependent ATP synthesis reaction, follow bimolecular ordered sequential kinetic mechanisms. In the ATPase reaction, MgATP binds before HCO3- as established previously for the overall reaction catalyzed by carbamyl phosphate synthetase [Raushel, F. M., Anderson, P. M., & Villafranca, J. J. (1978) Biochemistry 17, 5587-5591]. The initial velocity kinetics for the ATP synthesis reaction indicate that MgADP binds before carbamyl phosphate in an equilibrium ordered mechanism except in the presence of ornithine. Determination of true thermodynamic linked-function parameters describing the impact of allosteric ligands on the binding interactions of the first substrate to bind in an ordered mechanism requires experiments to be performed in which both substrates are varied even if only one is apparently affected by the allosteric ligands. In so doing, we have found that IMP has little effect on the overall reaction of either of these two partial reactions. UMP and ornithine, which have a pronounced effect on the apparent Km for MgATP in the overall reaction, both substantially change the thermodynamic dissociation constant for MgADP from the binary E-MgADP complex, Kia, in the ATP synthesis reaction, with UMP increasing Kia 15-fold and ornithine decreasing Kia by 18-fold. By contrast, only UMP substantially affects the Kia for MgATP in the ATPase reaction, increasing it by 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The in vivo dynamics of the pentose phosphate pathway has been studied with transient experiments in continuous culture of Saccharomyces cerevisiae. Rapid sampling was performed with a special sampling device after disturbing the steady state with a pulse of glucose. The time span of observation was 120 s after the pulse. During this short time period the dynamic effect of protein biosynthesis can be neglected. The metabolites of interest (glucose 6-phosphate, NADP, NADPH, 6-phosphogluconate, and MgATP2-) we determined with enzymatic assays and HPLC. The experimental observations were then used for the identification of kinetic rate equations and parameters under in vivo conditions. In accordance with results from in vitro studies the in vivo diagnosis supports an ordered Bi-Bi mechanism with noncompetitive inhibition by MgATP2- for the enzyme glucose-6-phosphate dehydrogenase. In the case of 6-phosphogluconate dehydrogenase an ordered Bi-Ter mechanism with a competitive inhibition by MgATP2- has been found. Because the MgATP2- concentration decreases abruptly after the pulse of glucose the inhibitory effect vanishes and the flux through the pentose phosphate pathway increases. This regulation phenomenon guarantees the balance of fluxes through glycolysis and pentose phosphate pathway during the dynamic time period.  相似文献   

7.
Adenosine 5-phosphosulfate (APS) kinase from Penicillium chrysogenum is irreversibly inactivated by trinitrobenzene sulfonate in a pseudo-first order process. Under standard assay conditions kapp was 1.9 X 10(-3) s-1. Saturating MgATP or MgADP decreased Kapp to a limit of 4.1 X 10(-4) s-1. There are several explanations for the partial protection, including the presence of two essential lysyl side chains, only one of which is at the active site. Analysis of the inactivation kinetics by means of linear plots derived for partial protection yielded dissociation constants for E X MgATP (Kia) and E X MgADP (Kiq) of 2.9 mM and 1.8 mM, respectively. Low concentrations of APS alone provided no protection against trinitrobenzene sulfonate inactivation, but in the presence of 1 mM MgADP, as little as 2 microM APS provided additional protection while 100 microM APS reduced kapp to the limit of 4.1 X 10(-4) s-1. The results confirm the formation of a dead end E X MgADP X APS proposed earlier as the cause of the potent substrate inhibition by APS. Linear plots of 1/delta k versus 1/[MgADP] at different fixed [APS] and of 1/delta k versus 1/[APS] at different fixed [MgADP] were characteristic of the ordered binding of MgADP before APS (or the highly synergistic random binding of the two ligands). The true APS dissociation constant of the dead end E X MgADP X APS complex (K'ib) was determined to be 1.9 microM. From the value of K'ib and the previously reported value of KIB (apparent inhibition constant of APS as a substrate inhibitor of the catalytic reaction at saturating MgATP), the ratio of the MgADP and PAPS release rate constants (k4/k3) was calculated to be 11. Inactivation kinetics was used to study the effects of Mg2+ and high salt on ADP and APS binding. The results indicated that free ADP binds to the enzyme more tightly than does MgADP at low ionic strength. High salt decreased free ADP binding, but had little effect on MgADP binding. APS binds more tightly to E X MgADP in the absence or presence of salt than to E X ADP.  相似文献   

8.
The fluorescent probe, 9-anthroylnitrile (ANN), can selectively attach to Ser-180 at the ATP-binding site of subfragment 1 (S1) of skeletal muscle myosin [J. Biol. Chem. 278 (2003) 31891]. We have found that MgATP, MgATPgammaS, MgADP.AlF(4) or MgPP(i), but not MgADP, inhibit the incorporation of ANN into S1. The inhibitory effect of the nucleotide gamma-phosphate group (or its analog) on the modification of S1 with ANN can be explained by the contribution of Ser-180 to the binding of the nucleotide gamma-phosphate at the active site of S1. We have also observed that the incorporation of ANN into S1.MgADP complex is inhibited by actin. These experimental data strongly support the existence of nucleotide-promoted conformational changes revealed by crystal structures of S1 complexes with various nucleotide analogs. They also convincingly show an effect of actin on the environment of Ser-180 at the nucleotide binding site of S1.  相似文献   

9.
The kinetic mechanism of phosphofructokinase has been determined at pH 8 for native enzyme and pH 6.8 for an enzyme desensitized to allosteric modulation by diethylpyrocarbonate modification. In both cases, the mechanism is predominantly steady state ordered with MgATP binding first in the direction of fructose 6-phosphate (F6P) phosphorylation and rapid equilibrium random in the direction of MgADP phosphorylation. This is a unique kinetic mechanism for a phosphofructokinase. Product inhibition by MgADP is competitive versus MgATP and noncompetitive versus F6P while fructose 1,6-bisphosphate (FBP) is competitive versus fructose 6-phosphate and uncompetitive versus MgATP. The uncompetitive pattern obtained versus F6P is indicative of a dead-end E.MgATP.FBP complex. Fructose 6-phosphate is noncompetitive versus either FBP or MgADP. Dead-end inhibition by arabinose 5-phosphate or 2,5-anhydro-D-mannitol 6-phosphate is uncompetitive versus MgATP corroborating the ordered addition of MgATP prior to F6P. In the direction of MgADP phosphorylation, inhibition by anhydromannitol 1,6-bisphosphate is noncompetitive versus MgADP, while Mg-adenosine 5'(beta, gamma-methylene)triphosphate is noncompetitive versus FBP. Anhydromannitol 6-phosphate is a slow substrate, while anhydroglucitol 6-phosphate is not. This suggests that the enzyme exhibits beta-anomeric specificity.  相似文献   

10.
11.
The role of tightly bound ADP on chloroplast ATPase   总被引:1,自引:0,他引:1  
Isolated chloroplast coupling factor 1 ATPase is known to retain about 1 mol of tightly bound ADP/mol of enzyme. Some experimental results have given evidence that the bound ADP is at catalytic sites, but this view has not been supported by observations of a slow replacement of the bound ADP when CaATP or MgATP is added. The experiments reported in this paper show why a slow replacement of ADP bound at a catalytic site can occur. When coupling factor 1, labeled with tightly bound [3H]ADP, is exposed to Mg2+ or Ca2+ prior to the addition of MgATP or CaATP, a pronounced lag in the onset of ATP hydrolysis is observed, and only slow replacement of the [3H]ADP occurs. Mg2+ or Ca2+ can induce inhibition very rapidly, as if an inhibited form of the enzyme results whenever the enzyme with tightly bound ADP encounters Mg2+ or Ca2+ prior to ATP. The inhibited form can be slowly reactivated by incubation with EDTA, although some irreversible loss in activity is encountered. In contrast, when MgATP or CaATP is added to enzyme depleted of Mg2+ and Ca2+ by incubation with EDTA, a rapid onset of ATP hydrolysis occurs and most of the tightly bound [3H]ADP is released within a few seconds, as expected for binding at a catalytic site. The Mg2+-induced inhibition of both the ATPase activity and the lack of replacement of tightly bound [3H] ADP can be largely prevented by incubation with Pi under conditions favoring Pi addition to the site containing the tightly bound ADP. Our and other results can be explained if enzyme catalysis is greatly hindered when MgADP or CaADP without accompanying Pi is tightly bound at one of the three catalytic sites on the enzyme in a high affinity conformation.  相似文献   

12.
Flow dialysis was used to study the binding of MgATP and MgADP to the nitrogenase proteins of Azotobacter vinelandii. Both reduced and oxidized Av2 bind two molecules of MgADP, with the following dissociation constants: reduced Av2, K1 = 0.091 +/- 0.021 mM and K2 = 0.044 +/- 0.009 mM; oxidized Av2, K1 = 0.024 +/- 0.015 mM and K2 = 0.039 +/- 0.022 mM. Binding of MgADP to reduced Av2 shows positive co-operativity. Oxidized Av2 binds two molecules of MgATP with dissociation constants K1 = 0.049 +/- 0.016 mM and K2 = 0.18 +/- 0.05 mM. Binding data of MgATP to reduced Av2 can be fitted by assuming one binding site, but a better fit was obtained by assuming two binding sites on the protein with negative co-operativity and with dissociation constants K1 = 0.22 +/- 0.03 mM and K2 = 1.71 +/- 0.50 mM. It was found that results concerning the number of binding sites and the dissociation constants of MgATP-Av2 and MgADP-Av2 complexes depend to a great extent on the specific activity of the Av2 preparation used, and that it is difficult to correct binding data for inactive protein. No binding of MgADP to Av1 could be demonstrated. Binding studies of MgADP to a mixture of Av1 and Av2 showed that Av1 did not affect the binding of MgADP to either oxidized or reduced Av2. Inhibition studies were performed to investigate the interaction of MgATP and MgADP binding to oxidized and reduced Av2. All the experimental data can be explained by the minimum hypothesis, i.e. the presence of two adenine nucleotide binding sites on Av2. MgATP and MgADP compete for these two binding sites on the Fe protein.  相似文献   

13.
Tonic rabbit femoral artery and phasic rabbit ileum smooth muscles permeabilized with Triton X-100 were activated either by increasing [Ca2+] from pCa > 8.0 to pCa 6.0 (calcium-ascending protocol) or contracted at pCa 6.0 before lowering [Ca2+] (calcium-descending protocol). The effects of, respectively, high [MgATP]/low [MgADP] [10 mM MgATP + creatine phosphate (CP) + creatine kinase (CK)] or low [MgATP]/[MgADP] (2 mM MgATP, 0 CP, 0 CK) on the "force-[Ca]" relationships were determined. In femoral artery at low, but not at high, [MgATP]/[MgADP] the force and the ratio of stiffness/force at pCa 7.2 were significantly higher under the calcium-descending than calcium-ascending protocols (54% vs. 3% of Po, the force at pCa 6.0) (force hysteresis); the levels of regulatory myosin light chain (MLC20) phosphorylation (9 +/- 2% vs. 10 +/- 2%) and the velocities of unloaded shortening V0 (0.02 +/- 0.004 l/s with both protocols) were not significantly different. No significant force hysteresis was detected in rabbit ileum under either of these experimental conditions. [MgADP], measured in extracts of permeabilized femoral artery strips by two methods, was 130-140 microM during maintained force under the calcium-descending protocol. Exogenous CP (10 mM) applied during the descending protocol reduced endogenous [MgADP] to 46 +/- 10 microM and abolished force hysteresis: residual force at low [Ca2+] was 17 +/- 5% of maximal force. We conclude that the proportion of force-generating nonphosphorylated (AMdp) relative to phosphorylated cross-bridges is higher on the Ca2+-descending than on the Ca2+-ascending force curve in tonic smooth muscle, that this population of positively strained dephosphorylated cross-bridges has a high affinity for MgADP, and that the dephosphorylated AMdp . MgADP state makes a significant contribution to force maintenance at low levels of MLC20 phosphorylation.  相似文献   

14.
Adenosine-5'-phosphosulfate kinase (ATP:adenylylsulfate 3'-phosphotransferase), the second enzyme in the pathway of sulfate activation, has been purified (approximately 300-fold) to homogeneity from an Escherichia coli K12 strain, which overproduces the enzyme activity (approximately 100-fold). The purified enzyme has a specific activity of 153 mumol of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) formed/min/mg of protein at 25 degrees C. The enzyme is remarkably efficient with a Vmax/Km(APS) of greater than 10(8) M-1 s-1, indicating that at physiologically low substrate concentrations the reaction is essentially diffusion limited. Upon incubation with MgATP a phosphorylated enzyme is formed; the isolated phosphorylated enzyme can transfer its phosphoryl group to adenosine 5'-phosphosulfate (APS) to form PAPS or to ADP to form ATP. The phosphorylated enzyme exists as a dimer of identical 21-kilodalton subunits, while the dephosphorylated form primarily exists as a tetramer. Divalent cations are required for activity with Mg(II), Mn(II), Co(II), and Cd(II) activating. Studies of the divalent metal-dependent stereoselectivity for the alpha- and beta-phosphorothioate derivatives of ATP indicate metal coordination to at least the alpha-phosphoryl group of the nucleotide. Steady state kinetic studies of the reverse reaction indicate a sequential mechanism, with a rapid equilibrium ordered binding of MgADP before PAPS. In the forward direction APS is a potent substrate inhibitor, competitive with ATP, complicating kinetic studies. The primary kinetic mechanism in the forward direction is sequential. Product inhibition studies at high concentrations of APS suggest an ordered kinetic mechanism with MgATP binding before APS. At submicromolar concentrations of APS, product inhibition by both MgADP and PAPS is more complex and is not consistent with a solely ordered sequential mechanism. The formation of a phosphorylated enzyme capable of transferring its phosphoryl group to APS or to MgADP suggests that a ping-pong pathway in which the rate of MgADP dissociation is comparable to the rate of APS binding might contribute at very low concentrations of APS. The substrate inhibition by APS is consistent with APS binding to the enzyme, to form a dead-end E.APS complex.  相似文献   

15.
Kinetic studies of fructokinase I of pea seeds   总被引:3,自引:0,他引:3  
Fructokinase I of pea seeds has been purified to homogeneity and the enzyme shown to be monomeric, with a molecular weight of 72,000 +/- 4000. The reaction mechanism was investigated by means of initial velocity studies. Both substrates inhibited the enzyme; the inhibition caused by MgATP was linear-uncompetitive with respect to fructose whereas that caused by D-fructose was hyperbolic-noncompetitive against MgATP. The product D-fructose 6-phosphate caused hyperbolic-noncompetitive inhibition with respect to both substrates. MgADP caused noncompetitive inhibition, which gave intercept and slope replots that were linear with D-fructose but hyperbolic with MgATP. Free Mg2+ caused linear-uncompetitive inhibition when either substrate was varied. L-Sorbose and beta, gamma-methyleneadenosine 5'-triphosphate were used as analogs of D-fructose and MgATP, respectively. Inhibition experiments using these compounds indicated that substrate addition was steady-state ordered, with MgATP adding first. The product inhibition experiments were found to be consistent with a steady-state random release of products. The substrate inhibition caused by MgATP was most likely due to the formation of an enzyme-MgATP-product dead-end complex, whereas that caused by D-fructose was due to alternative pathways in the reaction mechanism. The inhibition caused by Mg2+ can be explained in terms of a dead-end complex with either a central complex or an enzyme-product complex.  相似文献   

16.
Binding of MgADP and MgATP to Escherichia coli F1-ATPase (EcF1) has been assessed by their effects on extent of the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). MgADP at low concentrations (K d 1.3 μM) promotes the inhibition, whereas at higher concentrations (K d 0.7 mM) EcF1 is protected from inhibition. The mutant βY331W-EcF1 requires much higher MgADP, K d of about 10 mM, for protection. Such MgADP binding was not revealed by fluorescence quenching measurements. MgATP partially protects EcF1 from inactivation by NBD-Cl, but the enzyme remains sensitive to NBD-Cl in the presence of MgATP at concentrations as high as 10 mM. The activating anion selenite in the absence of MgATP partially protects EcF1 from inhibition by NBD-Cl. A complete protection of EcF1 from inhibition by NBD-Cl has been observed in the presence of both MgATP and selenite. The results support a bi-site catalytic mechanism for MgATP hydrolysis by F1-ATPases and suggest that stimulation of the enzyme activity by activating anions is due to the anion binding to a catalytic site that remains unoccupied at saturating substrate concentration.  相似文献   

17.
The effects of ADP and phosphate on the contraction of muscle fibers.   总被引:47,自引:11,他引:36       下载免费PDF全文
The products of MgATP hydrolysis bind to the nucleotide site of myosin and thus may be expected to inhibit the contraction of muscle fibers. We measured the effects of phosphate and MgADP on the isometric tensions and isotonic contraction velocities of glycerinated rabbit psoas muscle at 10 degrees C. Addition of phosphate decreased isometric force but did not affect the maximum velocity of shortening. To characterize the effects of ADP on fiber contractions, force-velocity curves were measured for fibers bathed in media containing various concentrations of MgATP (1.5-4 mM) and various concentrations of MgADP (1-4 mM). As the [MgADP]/[MgATP] ratio in the fiber increases, the maximum velocity achieved by the fiber decreases while the isometric tension increases. The inhibition of fiber velocities and the potentiation of fiber tension by MgADP is not altered by the presence of 12 mM phosphate. The concentration of both MgADP and MgATP within the fiber was calculated from the diffusion coefficient for nucleotides within the fiber, and the rate of MgADP production within the fiber. Using the calculated values for the nucleotide concentration inside the fiber, observed values of the maximum contraction velocity could be described, within experimental accuracy, by a model in which MgADP competed with MgATP and inhibited fiber velocity with an effective Ki of 0.2-0.3 mM. The average MgADP level generated by the fiber ATPase activity within the fiber was approximately 0.9 mM. In fatigued fibers MgADP and phosphate levels are known to be elevated, and tension and the maximum velocity of contraction are depressed. The results obtained here suggest that levels of MgADP in fatigued fibers play no role in these decreases in function, but the elevation of both phosphate and H+ is sufficient to account for much of the decrease in tension.  相似文献   

18.
The kinetics of the SMP-catalyzed Pi-ATP exchange and oxidative phosphorylation was studied at variable [MgATP] + + [MgADP] and [MgATP]/[MgADP]. The existence on F1 of a center with a low affinity was demonstrated (KM = 0.4-2.7 mM). Saturation of this center with the Mg2+-complex of one of the nucleotides is obligatory for H+-ATPase to exhibit its ATP synthetase activity. It was found that with a decrease of [MgATP]/[MgADP] the lag periods, tau, of the reactions and KM(Pi) also show a decrease. Besides, in the Pi-ATP exchange reactions delta microH+ (steady-state) diminishes and SMP coupling is enhanced (the Vhydr/Vsynth ratio is decreased). Preincubation of SMP with MgADP eliminates the lags but does not affect the course of the steady-state reaction. It is concluded that F1 when bound to MgATP or MgADP changes to a "more" or "less coupled" conformational state, thus determining the rate of conversion to the ATP-synthetase functional state (ko = tau-1), the threshold potential of this conversion and the kinetic behaviour of ATP-synthetase (KM for Pi).  相似文献   

19.
Inhibition studies of glucokinase were carried out with the products of the reaction, glucose 6-phosphate and MgADP-, as well as with ADP3-, Mg2+ and ATP4-. The results of these, together with those of kinetic studies of the uninhibited reaction described previously [Storer & Cornish-Bowden (1976) Biochem. J. 159, 7-14], indicate that the enzyme obeys a 'mnemonical' mechanism. This implies that the co-operativity observed with glucose as substrate arises because glucose binds differentially to two forms of the free enzyme that are not in equilibrium under steady-state conditions. The mechanism predicts the decrease in glucose co-operativity observed at low concentrations of MgATP2-. The product-inhibition results suggest that glucose 6-phosphate is released first and that it is possibly displaced by MgATP2- in a concerted reaction.  相似文献   

20.
The role of the substrate (MgATP) and product (MgADP) molecules in cross-bridge kinetics is investigated by small amplitude length oscillations (peak to peak: 3 nm/cross-bridge) and by following amplitude change and phase shift in tension time courses. The range of discrete frequencies used for this investigation is 0.25-250 Hz, which corresponds to 0.6-600 ms in time domain. This report investigates the identity of the high frequency exponential advance (process C), which is equivalent to "phase 2" of step analysis. The experiments are performed in maximally activated (pCa 4.5-5.0) single fibers from chemically skinned rabbit psoas fibers at 20 degrees C and at the ionic strength 195 mM. The rate constant 2 pi c deduced from process (C) increases and saturates hyperbolically with an increase in MgATP concentration, whereas the same rate constant decreases monotonically with an increase in MgADP concentration. The effects of MgATP and MgADP are opposite in all respects we have studied. These observations are consistent with a cross-bridge scheme in which MgATP and MgADP are in rapid equilibria with rigorlike cross-bridges, and they compete for the substrate site on myosin heads. From our measurements, the association constants are found to be 1.4 mM-1 for MgATP and 2.8 mM-1 for MgADP. We further deduced that the composite second order rate constant of MgATP binding to cross-bridges and subsequent isomerization/dissociation reaction to be 0.57 x 10(6)M-1s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号