首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Explicit understanding of the spatial scale of evolutionary processes is required in order to set targets for their effective conservation. Here, we explore the spatial context of neutral and adaptive divergence in the species-rich Knersvlakte region of South Africa. Specifically, we aimed to assess the importance of erosional drainage basins as spatial units of evolutionary process. We used amplified fragment length polymorphism (AFLP) and reciprocal transplants to investigate genetic differentiation in Argyroderma pearsonii, sampled from sparse and dense quartz habitats within each of three drainage basins. This design allowed assessment of differentiation at two distinct spatial scales; between habitats within basins, and between basins. We found near-perfect concordance between genetic clusters and basin occupancy, suggesting restricted interbasin gene flow. In addition, transplants reveal adaptive divergence between basins on the dense quartz habitat. We have shown that neutral and adaptive differentiation occurs between basins, but not between habitats within basins, suggesting that conservation plans aimed at conserving multiple interconnected drainage basins will capture an important axis of evolutionary process on the Knersvlakte.  相似文献   

2.
We investigated the conditions under which plastic responses to density are adaptive in natural populations of Impatiens capensis and determined whether plasticity has evolved differently in different selective environments. Previous studies showed that a population that evolved in a sunny site exhibited greater plasticity in response to density than did a population that evolved in a woodland site. Using replicate inbred lines in a reciprocal transplant that included a density manipulation, we asked whether such population differentiation was consistent with the hypothesis of adaptive divergence. We hypothesized that plasticity would be more strongly favored in the sunny site than in the woodland site; consequently, we predicted that selection would be more strongly density dependent in the sunny site, favoring the phenotype that was expressed at each density. Selection on internode length and flowering date was consistent with the hypothesis of adaptive divergence in plasticity. Few costs or benefits of plasticity were detected independently from the expressed phenotype, so plasticity was selected primarily through selection on the phenotype. Correlations between phenotypes and their plasticity varied with the environment and would cause indirect selection on plasticity to be environment dependent. We showed that an appropriate plastic response even to a rare environment can greatly increase genotypic fitness when that environment is favorable. Selection on the measured characters contributed to local adaptation and fully accounted for fitness differences between populations in all treatments except the woodland site at natural density.  相似文献   

3.
Seasonal changes in fur colour in some mammalian species have long attracted the attention of biologists, especially in species showing population variation in these seasonal changes. Genetic differences among populations that show differences in seasonal changes in coat colour have been poorly studied. Because the Japanese hare (Lepus brachyurus) has two allopatric morphotypes that show remarkably different coat colours in winter, we examined the population genetic structure of the species using partial sequences of the SRY gene and six autosomal genes: three coat colour‐related genes (ASIP, TYR, and MC1R) and three putatively neutral genes (TSHB, APOB, and SPTBN1). The phylogenetic tree of SRY sequences exhibited two distinct lineages that diverged approsimately 1 Mya. Although the two lineages exhibited a clear allopatric distribution, it was not consistent with the distribution of morphotypes. In addition, six nuclear gene sequences failed to reveal genetic differences between morphotypes. Population network trees for 11 expedient populations divided the populations into four groups. Genetic structure analysis revealed an admixture of four genetic clusters in L. brachyurus, two of which showed large genetic differences. Our results suggest ancient vicariance in L. brachyurus, and we detected no genetic differences between the two morphotypes. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 761–776.  相似文献   

4.
The relative importance of ecological selection and geographical isolation in promoting and constraining genetic and phenotypic differentiation among populations is not always obvious. Interacting with divergent selection, restricted opportunity for gene flow may in some cases be as much a cause as a consequence of adaptation, with the latter being a hallmark of ecological speciation. Ecological speciation is well studied in parts of the native range of the three‐spined stickleback. Here, we study this process in a recently invaded part of its range. Switzerland was colonized within the past 140 years from at least three different colonization events involving different stickleback lineages. They now occupy diverse habitats, ranging from small streams to the pelagic zone of large lakes. We use replicated systems of parapatric lake and stream populations, some of which trace their origins to different invasive lineages, to ask (i) whether phenotypic divergence occurred among populations inhabiting distinct habitats, (ii) whether trajectories of phenotypic divergence follow predictable parallel patterns and (iii) whether gene flow constrains divergent adaptation or vice versa. We find consistent phenotypic divergence between populations occupying distinct habitats. This involves parallel evolution in several traits with known ecological relevance in independent evolutionary lineages. Adaptive divergence supersedes homogenizing gene flow even at a small spatial scale. We find evidence that adaptive phenotypic divergence places constraints on gene flow over and above that imposed by geographical distance, signalling the early onset of ecological speciation.  相似文献   

5.
Local adaptation to variable environments can generate clinal variation in morphological traits. Alternatively, similar patterns of clinal variation may be generated simply as a result of genetic drift/migration balance. Teasing apart these different processes is a continuing focus in evolutionary ecology. We compare genetic differentiation at molecular loci and quantitative traits to analyse the effect of these different processes in a morphological latitudinal cline of the barn swallow, Hirundo rustica, breeding across Europe. The results obtained show no structuring at neutral microsatellite loci, which contrasts with positive structuring at five quantitative morphometric traits. This supports the hypothesis that the observed morphometric cline in barn swallows is the result of selection acting in a spatially heterogeneous environment. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 306–314.  相似文献   

6.
Acoustic signals show immense variation among passerines, and several hypotheses have been proposed to explain this diversity. In this study, we tested, for the first time, the relationships of song structure to phylogeny, habitat type, and morphology in the vireos and allies (Vireonidae). Every measure of song structure considered in this study had moderate and significant phylogenetic signal. Furthermore, two song-constraining morphological traits, bill shape and body mass, also exhibited significant phylogenetic signal. Song length showed the largest within-clade similarity; longer songs were highly conserved in part of the greenlet (Hylophilus) clade, whereas shorter songs characterized the remaining seven genera. We found no differences in song structure among vireonids living in different habitat types. However, vireonids with shorter, stouter bills and larger bodies sang songs with lower minimum and maximum peak frequency, compared with species with longer, thinner bills and smaller bodies. We conclude that Vireonidae song evolution is driven partially by phylogenetically conserved morphological traits. Our findings support the phylogenetic signal and morphological constraints hypotheses explaining structural diversity in avian acoustic signals.  相似文献   

7.
8.
Historical population bottlenecks and natural selection have important effects on the current genetic diversity and structure of long‐lived trees. Dracaena cambodiana is an endangered, long‐lived tree endemic to Hainan Island, China. Our field investigations showed that only 10 populations remain on Hainan Island and that almost all have been seriously isolated and grow in distinct habitats. A considerable amount of genetic variation at the species level, but little variation at the population level, and a high level of genetic differentiation among the populations with limited gene flow in D. cambodiana were detected using inter‐simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) analyses. No significant correlation was found between genetic diversity and actual population size, as the genetic diversities were similar regardless of population size. The Mantel test revealed that there was no correlation between genetic and geographic distances among the 10 populations. The UPGMA, PCoA and Bayesian analyses showed that local adaptive divergence has occurred among the D. cambodiana populations, which was further supported by habitat‐private fragments. We suggest that the current genetic diversity and population differentiation of D. cambodiana resulted from historical population bottlenecks and natural selection followed by historical isolation. However, the lack of natural regeneration of D. cambodiana indicates that former local adaptations with low genetic diversity may have been genetically weak and are unable to adapt to the current ecological environments.  相似文献   

9.
Little is known about the influence of genetic architecture on local adaptation. We investigated the genetic architecture of the rapid contemporary evolution of mouthparts, the flight polymorphism and life history traits in the soapberry bug Jadera haematoloma (Hemiptera) using laboratory selection. The mouthparts of these seed‐feeding bugs have adapted in 40–50 years by decreasing in length following novel natural selection induced by a host switch to the seeds of an introduced tree with smaller fruits than those of the native host vine. Laboratory selection on beak length in both an ancestral population feeding on the native host and a derived population feeding on the introduced host reveals genetic variance allowing a rapid response (heritabilities of 0.51–0.87) to selection for either longer or shorter beaks. This selection resulted in reverse evolution by restoring long beaks in the derived population and forward evolution by re‐creating short beaks in the ancestral bugs. There were strong genetic correlations (0.68–0.84) in both populations between beak lengths and the frequency of flight morphs, with short beaks associated with short wings. The results reveal a genetically interrelated set of adaptive multivariate traits including both beak length and flight morph. This suite of traits reflects host plant patchiness and seeding phenology. Weaker evidence suggests that egg mass and early egg production may be elements of the same suite. Reversible or forward evolution thus may occur in a broad set of genetically correlated multivariate traits undergoing rapid contemporary adaptation to altered local environments.  相似文献   

10.
To examine the role of contemporary selection in maintaining significant allele frequency differences at the pantophysin (PanI) locus among populations of the Atlantic cod, Gadus morhua, in northern Norway, we sequenced 127 PanIA alleles sampled from six coastal and two Barents Sea populations. The distributions of variable sites segregating within the PanIA allelic class were then compared among the populations. Significant differences were detected in the overall frequencies of PanIA alleles among populations within coastal and Arctic regions that was similar in magnitude to heterogeneity in the distributions of polymorphic sites segregating within the PanIA allelic class. The differentiation observed at silent sites in the PanIA allelic class contradicts the predicted effects of widescale gene flow and suggests that postsettlement selection acting on cohorts cannot be responsible for the genetic differences described between coastal and Arctic populations. Our results suggest that the marked differences observed between coastal and Arctic populations of G. morhua in northern Norway at the PanI locus reflect the action of recent diversifying selection and that populations throughout the region may be more independent than suggested by previous studies.  相似文献   

11.

Introduction

The aim of this study was to determine the factors, including markers of bone resorption and bone formation, which determine catabolic and anabolic periarticular bone changes in patients with rheumatoid arthritis (RA).

Methods

Forty RA patients received high-resolution peripheral quantitative computed tomography (HR-pQCT) analysis of the metacarpophalangeal joints II and III of the dominantly affected hand at two sequential time points (baseline, one year follow-up). Erosion counts and scores as well as osteophyte counts and scores were recorded. Simultaneously, serum markers of bone resorption (C-terminal telopeptide of type I collagen (CTX I), tartrate-resistant acid phosphatase 5b (TRAP5b)), bone formation (bone alkaline phosphatase (BAP), osteocalcin (OC)) and calcium homeostasis (parathyroid hormone (PTH), 25-hydroxyvitamin D3 (Vit D)) were assessed. Bone biomarkers were correlated to imaging data by partial correlation adjusting for various demographic and disease-specific parameters. Additionally, imaging data were analyzed by mixed linear model regression.

Results

Partial correlation analysis showed that TRAP5b levels correlate significantly with bone erosions, whereas BAP levels correlate with osteophytes at both time points. In the mixed linear model with erosions as the dependent variable, disease duration (P <0.001) was the key determinant for these catabolic bone changes. In contrast, BAP (P = 0.001) as well as age (P = 0.018), but not disease duration (P = 0.762), were the main determinants for the anabolic changes (osteophytes) of the periarticular bone in patients with RA.

Conclusions

This study shows that structural bone changes assessed with HR-pQCT are accompanied by alterations in systemic markers of bone resorption and bone formation. Besides, it can be shown that bone erosions in RA patients depend on disease duration, whereas osteophytes are associated with age as well as serum level of BAP. Therefore, these data not only suggest that different variables are involved in formation of bone erosions and osteophytes in RA patients, but also that periarticular bone changes correlate with alterations in systemic markers of bone metabolism, pointing out BAP as an important parameter.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号