首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic enrichment cultures inoculated with neutral and alkaline (pH 7.0–9.0) sediment and biomat samples from hot-springs in Hveragerdi and Fluir, Iceland, were screened for growth on beech xylan from pH 8.0 to 10.0 at 68° C: no growth occured in cultures above pH 8.4. Five anaerobic xylanolytic bacteria were isolated from enrichment cultures at pH 8.4; all five microbes were Gram-positive rods with terminal spores, and produced CO2, H2, acetate, lactate and ethanol from xylan and xylose. One of the isolates, strain A2, grew from 50 to 75° C, with optimum growth near 68° C, and from pH 5.2 to 9.0 with an optimum between 6.8 and 7.4. Taxonomically, strain A2 was most similar to Clostridium thermohydrosulfuricum. At pH 7.0, the supernatant xylanases of strain A2 had a temperature range from 50 to 78° C with an optimum between 68 and 78° C. At 68° C, xylanase activity occurred from pH 4.9 to 9.1, with an optimum from pH 5.0 to 6.6. At pH 7.0 and 68° C, the K m of the supernatant xylanases was 2.75 g xylan/l and the V max was 2.65 × 10–6 kat/l culture supernatant. When grown on xylose, xylanase production was as high as when grown on xylan. Correspondence to: B. K. Ahring  相似文献   

2.
Thermophilic, aerobic bacteria isolated from Icelandic hot springs were screened for xylanase activity. Of 97 strains tested, 14 were found to be xylanase positive. Xylanase activities up to 12 nkat/ml were produced by these strains in shake flasks on xylan medium. The xylanases of the two strains producing the highest activities (ITI 36 and ITI 283) were similar with respect to temperature and pH optima (80°C and pH 8.0). Xylanase production of strain ITI 36 was found to be induced by xylan and xylose. Xylanase activity of 24 nkat/ml was obtained with this strain in a laboratory-scale-fermentor cultivation on xylose medium. -Xylosidase activity was also detected in the culture filtrate. The thermal half-life of ITI 36 xylanase was 24 h at 70°C. The highest production of sugars from hydrolysis of beech xylan was obtained at 70°C, although xylan depolymerization was detected even up to 90°C. Correspondence to: M. Rättö  相似文献   

3.
Xylanase production by a new alkali-tolerant isolate of Bacillus   总被引:4,自引:0,他引:4  
The xylanolytic system of an alkali-tolerant Bacillus sp. consists of several xylanases ranging from 22 to 120 kDa and pI values from 7.0 to 9.0. Crude xylanase retained 72% of initial activity after 5 h at pH 9.0 and 45°C. Xylanase production was induced by xylose and xylan and was maximum at 42°C and pH 7.8. Crude xylanase released xylotriose and xylotetraose as main products of xylan hydrolysis. Xylose was not detected. © Rapid Science Ltd. 1998  相似文献   

4.
30 strains of xylanolytic thermophilic actinomycetes were isolated from composted grass and cattle manure and identified as members of the generaThermomonospora, Saccharomonospora, Microbispora, Streptomyces andActinomadura. Screening of these strains for extracellular xylanase indicated that strains ofSaccharomonospora andMicrobispora generally were poor xylanase producers (0.5–1.5 U/ml) whereas relatively high activities were observed in cultures ofStreptomyces andActionomadura (4–12 U/ml).A preliminary characterization of the enzymes of strains of the latter genera suggested that xylanases of all the strains ofActinomadura exhibited higher thermostabilities than those ofStreptomyces. To evaluate the potential of thermophilicActinomadura for industrial applications, xylanases of three strains were studied in more detail. The highest activity levels for xylanases were observed in cultures grown on xylan and wheat bran. The optimal pH and temperature for xylanase activities ranged from 6.0 to 7.0 and 70 to 80°C. The enzymes exhibited considerable thermostability at their optimum temperature. The half-lives at 75°C were in the range from 6.5 to 17h. Hydrolysis of xylan by extracellular xylanases yielded xylobiose, xylose and arabinose as principal products. Estimated by the amount of reducing sugars liberated the degree of hydrolysis was 55 to 65%. Complete utilization of xylan is presumably achieved by -xylosidase activities which could be shown to be largely cell-associated in the 3Actinomadura strains.  相似文献   

5.
Xylanases from alkalophilic thermophilic Bacillus spp. Wl and W2 were purified and characterized. The xylanases from the two strains were fractionated into two active components (I and II) by DEAE-Toyopearl 650M chromatography. Components I from the two strains had similar properties: optimum pH, 6.0; optimum temperature, 65°C; isoelectric point, pH 8.5 and 8.3; molecular weight, 21,500 and 22,500; and Michaelis constant, 4.5 and 4.0mg-xylan/ml. Components II from the two strains also had similar properties: optimum pH, 7.0~9.0 and 7.0~9.5; optimum temperature, 70°C; isoelectric point, pH 3.6 and 3.7; molecular weight, 49,500 and 50,000; and Michaelis constant, 0.95 and 0.57mg-xylan/ml. The activities of components I and II were inhibited by Hg++ and Cu++. Components I hydrolyzed xylan to yield xylobiose and higher oligomers, but components II produced xylose other than xylobiose and xylooligomers.  相似文献   

6.
A new thermophilic strain of Bacillus SPS-0 which produces thermostable xylanases was isolated from a hot spring in Portugal. Xylanase production was 50 nkat/ml in the presence of wheat bran arabinoxylan. The temperature and pH for optimum activity were 75°C and 6–9, respectively. The hydrolysis patterns demonstrated that crude xylanases yield mainly xylose and xylobiose from xylan, whereas xylose and arabinose were produced from destarched wheat bran. An increase in xylose release was observed when SPS-0 xylanase was supplemented by a ferulic acid esterase. © Rapid Science Ltd. 1998  相似文献   

7.
Summary The production of cellulases and of xylanase by Streptomyces lividans 1326 was studied under different growth conditions. The strain grew between 18°C and 46°C and is therefore thermotolerant. Submerged cultures of the microorganism, when grown on a defined salt medium containing xylan as main carbon source, exhibited an overall cellulolytic activity as determined by the filter paper test. S. lividans produced optimal levels of extracellular -1,4-glucan-glucanohydrolase (1 IU/ml) and large amounts of -1,4-xylanxylanohydrolase (50 IU/ml) at 40°C. A better production of both enzymes was observed when xylan instead of cellulose was used as substrate.The stability of the enzyme was found to be significantly greater than those of the cellulases and xylanases produced by other streptomycetes. The optimal incubation temperatures for the enzyme assays were 55°C and 60°C for CM-cellulase and xylanase respectively and optimal pH values were found in the range of pH 6–7.  相似文献   

8.
Xylanase production by seven fungal strains was investigated using concentrated spent sulphite liquor (SSLc), xylan and d-xylose as carbon substrates. An SSLc-based medium induced xylanase production at varying levels in all of these strains, with Aspergillus oryzae NRRL 3485 and Aspergillus phoenicis ATCC 13157 yielding activities of 164 and 146 U ml−1, respectively; these values were higher than those obtained on xylan or d-xylose with the same fungal strains. The highest xylanase activity of 322 U ml−1 was obtained with Aspergillus foetidus ATCC 14916 on xylan. Electrophoretic and zymogram analysis indicated three xylanases from A. oryzae with molecular weights of approximately 32, 22 and 19 kDa, whereas A. phoenicis produced two xylanases with molecular weights of about 25 and 21 kDa. Crude xylanase preparations from these A. oryzae and A. phoenicis strains exhibited optimal activities at pH 6.5 and 5.0 and at 65 and 55°C, respectively. The A. oryzae xylanolytic activity was stable at 50°C over the pH range 4.5–10. The crude xylanase preparations from these A. oryzae and A. phoenicis strains had negligible cellulase activity, and their application in the biobleaching of hardwood pulp reduced chlorine dioxide consumption by 20–30% without sacrificing brightness.  相似文献   

9.
Two endoxylanases were isolated from the xylanolytic enzyme system of the thermophilic actinomycete Microtetraspora flexuosa SIIX, and purified by ammonium sulfate fractionation, DEAE-Sepharose chromatography, gel filtration on Sephacryl S 200 and fast protein liquid chromatography on Q-Sepharose. The molecular masses of xylanase I and II were 26.3 and 16.8 kDa, and isoelectric points were 8.4 and 9.45, respectively. optimal enzyme activities were obtained at 80° C and pH 6.0. The thermostability of both xylanases was greatly diminished during purification but could be restored by preincubation of the purified enzymes in the presence of xylan. The half-lives at 80° C were approximately 25 min. The kinetic constants of xylanases I and II determined with Remazol-brilliant-blue xylan were Vmax of 1537 and 353 mol·min-1·mg protein-1 and K m values of 2.44 and 1.07 mg·ml-1, respectively. Purified xylanases utilized xylan as well as small oligosaccharides such as xylotriose as substrate. They did not exhibit xylobiase or debranching activities. The predominant products of arabinoxylan hydrolysis were xylobiose and xylotriose, the latter being hydrolysed to xylobiose and xylose upon further incubation. In addition, fragments containing arabinose side chains accumulated. The xylanases did not act on crystalline or amorphous cellulose indicating a possible application in biobleaching processes.  相似文献   

10.
This is the first detailed report of xylanolytic activity in Thermus strains. Two highly thermophilic xylanolytic bacteria, very closely related to non-xylanolytic T. thermophilus strains, have been isolated from the hottest zones of compost piles. Strain X6 was investigated in more detail. The growth rate (optical density monitoring) on xylan was 0.404.h-1 at 75 degrees C. Maximal growth temperature was 81 degrees C. Xylanase activity was mainly cell-bound, but was solubilized into the medium by sonication. It was induced by xylan or xylose in the culture medium. The temperature and pH optima of the xylanases were determined to be around 100 degrees C and pH 6, respectively. Xylanase activity was fairly thermostable; only 39% of activity was lost after an incubation period of 48 h at 90 degrees C in the absence of substrate. Xylanolytic T. thermophilus strains could contribute to the degradation of hemicellulose during the thermogenic phase of industrial composting.  相似文献   

11.
Summary Clostridium thermoaceticum was used to ferment carbohydrate released from pretreated oat splet xylan and hemicellulose isolated from hybrid poplar. Hydrolysis with dilute sulfuric acid (2.5% (v/v) for oat spelt xylan and 4.0% (v/v) for poplar hemicellulose) at 100°C for 60 min was found to release the highest concentration of fermentable substrate.C. thermoaceticum, when grown in non-pH controlled batch culture at 55°C under a headspace of 100% CO2, typically produced 14gl–1 acetic acid during a 48 h fermentation in medium containing 2% xylose. In fed-batch fermentations this organism was able to produce 42gl–1 acetic acid after 116h when the concentration of xylose was maintained at approximately 2% and the pH was controlled at 7.0.  相似文献   

12.
Summary Maximum xylanase production byChaetomium cellulolyticum was obtained in the culture supernatant after 30 h of growth at 37°C in basal medium containing 1% xylan at pH maintained between 6.5 and 7.5. Addition of 0.05% Tween 80 to the medium increased the enzyme production considerably. Xylanase production was found to be growth associated. The optimal conditions for enzymatic hydrolysis of xylan were found to be pH 6.0 and 50°C. During enzymatic hydrolysis, xylose, xylobiose and other xylooligosaccharides were liberated from xylan. The pH values for xylanase production and for xylan hydrolysis were closely related to the utilization of hemicelluloses of aspen wood for fungal protein production by this organism as reported in our earlier work.  相似文献   

13.
假单胞菌碱性木聚糖酶的纯化及性质   总被引:5,自引:0,他引:5  
假单胞菌(Pseudomonas)G62可产生两种胞外木聚糖酶,即XynA和XynB。经过硫酸铵沉淀、阴离子和阳离子交换层析、分子筛色谱,最终得到 两种电泳纯酶。XynA的分子量及等电点分别为42kD和91,XynB的分子量和等电点分别是 20kD和88。经薄层色谱分析证明,两酶以不同的方式水解木聚糖,但都不产生木糖,即 两酶都为内切酶,它们的最适作用温度均为50℃。XynA的最适作用pH为7.0~9.8,而XynB的为7.0~7.5。在65℃时的半寿期XynA为6 min,XynB为140 min。XynA的Km和Vmax分别是5.56 mg·ml-1和543μmol·min-1·mg-1,XynB的Km和Vmax分别是7.72 mg·ml-1和819μmol·min-1·mg-1。两酶受Cu2+、Fe3+、Pb2+、Zn2+和Hg2+强烈抑制。化学修饰的初步结果表明,两酶的活性位点氨基酸均含有色氨酸和羧基氨基酸。  相似文献   

14.
During the bleaching of wood pulp for the paper industry, large amounts of chlorinated aromatic compounds are produced and released into the environment. These compounds are extremely toxic and are a major source of pollution. The paper and pulp industry is seeking for alternative methods for bleaching pulp. One such method involves the use of hemicellulases to release the colored lignohemicellulose. We have isolated and characterized several thermophilic bacteria which produce xylanases. One such strain, T-6, produced high levels of extracellular xylanase, free of cellulase and proteinase activities. Strain T-6 was classified as a strain of Bacillus stearothermophilus and was able to grow on defined medium containing xylose, methionine and asparagine at 65 °C. Xylanase activity was induced by either xylose or xylan; no activity was detected with other carbon sources, such as glycerol, acetate, lactose, glucose, maltose, fructose, mannose, galactose or sucrose. Xylanase constitutive mutants were obtained following mutagenesis and detection on p-nitrophenol -d-xylopyranoside containing agar plates. Xylanase T-6 was produced on large scale, and was purified and concentrated by a single adsorption-desorption step from a cation exchanger. The overall purification yield of a 1000 liter fermentation was 45%, resulting in a 98% pure enzyme. Xylanase T-6 was shown to partially remove lignin from unbleached pulp at 65 °C and pH 9.0, without loss in pulp viscosity. The enzyme-treated pulp was used to make handsheets that had higher brightness than untreated pulp.  相似文献   

15.
As part of a study of the biogas production from cattle waste, xylanolytic bacteria were isolated from enrichments of fermenting cattle manure. From 34 isolates, mostly Gram-negative rods, a typical strain was investigated in more detail. It was an anaerobic non-sporeforming, Gramnegative rod, which was motile with peritrichous flagella. This organism fermented xylan and many soluble sugars (glucose, cellobiose, mannose, xylose, arabinose). Other hemicelluloses such as gum xanthan, laminaran, locust bean gum, and gum arabic were not utilized. It also could not use cellulose. Fermentation products were carbon dioxide, hydrogen, acetate and ethanol. The bacterium produced carboxymethylcellulase and xylanase, especially when growing on xylan. Growth was optimal between 25°C and 40°C and between pH 6.5 and 7.5. The guanine plus cytosine content of the DNA was 34.8±0.8%. The isolate was identified as a member of the genus Bacteroides, and a new species is proposed: Bacteroides xylanolyticus (xylan dissolving). The type strain of B. xylanolyticus is strain X5-1 (DSM 3808).  相似文献   

16.
Summary An agar plate-clearing assay was used to screen 37 thermophilic actinomycete strains for extracellular xylanase production. The xylanase activity in culture supernatants of strains representing Saccharomonospora viridis and three Thermomonospora spp. was characterised by measurement of reducing sugar released from oat spelt xylan and analysis of degradation products by thin-layer chromatography. In all four species, xylanase activity was optimal within the temperature range 60–75°C and between pH 5 and pH 8. While culture supernatants of Thermomonospora strains incubated at 70°C for 60 min retained >80% of their activity, that of S. viridis was almost, totally inactivated.All of the culture supernatants initially hydrolysed xylan to a mixture of oligomeric products, indicating that the main activity was of the endoxylanase type. Prolonged incubation for 24h resulted in the hydrolysis of xylan to d-xylose by T curvata and T. fusca preparations, indicating the additional presence of exoxylanase or -xylosidase activity. Xylanase production was induced by growth on xylan although low levels of activity were also detected in glucose-grown cultures. Thermomonospora curvata MT815 culture supernatant was the most active and produced d-xylose from milled wheat straw in yields approximately 10% of those from oat spelt xylan.  相似文献   

17.
Summary An alkali-tolerant fungusAsperqillus fischeri Fxn1 isolated from xylan enrichment grew in the pH range 5–10 and secreted an extracellular cellulase-free xylanase. Arabinose, lactose, maltose, cellobiose and glucose induced low levels of xylanase (1.8–9.0 IU/ml), whereas xylose, xylan and wheat bran induced higher level (34–45 IU/ml).CMcellulose and FPcellulose did not support growth. The optimum pH of xylanase was 6.0–6.5 and it was stable in a wide range of pH 5–9.5. The optimum temperature was 60°C and it was stable upto 55°C. The half-lives at 50 and 55 °C were 240 and 40 min. respectively. This enzyme released reducing sugars from pulp at pH 9.0 and 40°C.  相似文献   

18.
Summary Bacillus thermoalkalophilus isolated from termite-infested mound soils of the semi-arid zones of India had the ability to produce good amounts of xylanase(s) from cheap agricultural wastes. Of the two hemicellulosic substrates tested, bagasse was found to be the better inducer for xylanase production. Alkali treatment of bagasse and rice husk had varied effects on enzyme production. The enzyme preparation had activity optima at 60° C and 70° C and a half-life of 60 min at 65° C. The enzyme was stable for 24 h over a pH range of 4.0–6.0, while maximum activity was observed at pH 6.0–7.0. Enzyme production and activity were inhibited by the end-product of xylan hydrolysis, xylose. Offprint requests to: Ajit Varma  相似文献   

19.
Alkali-treated corn stalk gave maximum xylanase production at supporting growth of Streptomyces HM-15. Xylanase was stable for 24 h over a pH range of 5.0 to 7.0, had optimal activity between 50 and 60°C and a halflife of 5 h at 60°C. Xylanase production and activity were inhibited by xylose.The authors are with Department of Biosciences, Sardar Patel University. Vallabh Vidyanagar-388120, Gujarat, India.  相似文献   

20.
This study deals with characterizing the extracellular xylanases produced by a strain of the thermophilic bacterial genus Thermomonospora. Supernatant from centrifuged fermentation broth was used as a crude enzyme preparation. From pH 5.5 to pH 7.7 the temperature optimum based on a 10-min assay of activity was 80 degrees C. The crude enzyme had a half-life of approximately 1 month when stored at 55 degrees C at pH 6.5. The enzyme produced a mixture of xylose oligomers from xylan, with xylobiose occuring in greatest quantity on a molar basis. Only trace quantities of xylose were produced by this hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号