首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
S A Lesko  J L Drocourt  S U Yang 《Biochemistry》1982,21(20):5010-5015
DNA-protein and DNA interstrand cross-links were induced in isolated chromatin after treatment with H2O2 and ferrous ethylenediaminetetraacetate (EDTA). Retention of DNA on membrane filters after heating of chromatin in a dissociating solvent indicated the presence of a stable linkage between DNA and protein. Treatment of protein-free DNA with H2O2/Fe2+-EDTA did not result in enhanced filter retention. Incubation of cross-linked chromatin with proteinase K completely eliminated filter retention. Resistance to S1 nuclease after a denaturation-renaturation cycle was used to detect DNA interstrand cross-links. Heating the treated chromatin at 45 degrees C for 16 h and NaBH4 reduction enhanced the extent of interstrand cross-linking. The following data are consistent with, but do not totally prove, the hypothesis that cross-links are induced by hydroxyl radicals generated in Fenton-type reactions: (1) cross-linking was inhibited by hydroxyl radical scavengers; (2) the degree of inhibition of DNA interstrand cross-links correlated very closely with the rate constants of the scavengers for reaction with hydroxyl radicals; (3) cross-linking was eliminated or greatly reduced by catalase; (4) the extent of cross-linking was directly related to the concentration of Fe2+-EDTA. Partial inhibition of cross-linking by superoxide dismutase indicates that superoxide-driven Fenton chemistry is involved. The data indicate that DNA cross-linking may play a role in the manifestation of the biological activity of agents or systems that generate reactive hydroxyl radicals.  相似文献   

4.
A general protocol for preparation of oligonucleotides containing intrastrand cross-links between the exocyclic amino groups of adjacent deoxyguanosines has been developed. A series of 2, 3, and 4 methylene cross-links was incorporated site-specifically into an 11-mer (5'-GGCAGGTGGTG-3', cross-linked positions are underlined) via a reaction between oligonucleotide containing 2-fluoro-O(6)-trimethylsilylethyl deoxyinosines and the appropriate diamine (ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane). These cross-linked-oligonucleotides were studied for their ability to bend DNA by the method of Koo and Crothers [Koo, H. S., and Crothers, D. M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1763-1767] in which the mobility of ligated oligomers in nondenaturing polyacrylamide gels is evaluated. It was found that all cross-links induced bending (2-carbon cross-link, 30.0 +/- 4.0 deg/turn; 3-carbon cross-link, 11.7 +/- 1.6 deg/turn; 4-carbon cross-link, 7.4 +/- 1.0 deg/turn). Despite the differing extent of helical distortion exhibited by the cross-links, all appeared to be equally blocking to replication by the Escherichia coli polymerases, pol I, pol II, and pol III. In contrast, when incision of the cross-links by the E. coli UvrABC nucleotide incision complex was studied, the extent of incision of the cross-link was found to correlate closely with the degree of bending measured in the gel mobility assay, i.e., the efficiency of incision was 2-carbon > 3-carbon > 4-carbon.  相似文献   

5.
The modified gel-electrophoresis techniques were used to study DNA destruction in oligonucleosomes of the chromatin and the formation of DNA-protein cross-links under the effect of 60Co-gamma-rays. The yields of DNA destruction were evaluated in different conditions of chromatin irradiation: they were comparable with the yields of single-strand breaks. The bonds in the DNA-protein polymer formed were found to be covalent. It was shown that the processes of formation of cross-links and peroxide radicals (hydroperoxides) were mutually exclusive.  相似文献   

6.
Yj Xu  Z Xi  Ys Zhen  IH Goldberg 《Biochemistry》1997,36(48):14975-14984
The potent enediyne antitumor antibiotic C1027 has been previously reported to induce novel DNA interstrand cross-links and drug monoadducts under anaerobic conditions [Xu et al. (1997) J. Am. Chem. Soc. 119, 1133-1134]. In the present study, we explored the mechanism of formation of these anaerobic DNA lesions. We found that, similar to the aerobic reaction, the diradical species of the activated drug initiates anaerobic DNA damage by abstracting hydrogen atoms from the C4', C1', and C5' positions of the A1, A2, and A3 nucleotides, respectively, in the most preferred 5'GTTA1T/5'ATA2A3C binding sequence. It is proposed that the newly generated deoxyribosyl radicals, which cannot undergo oxidation, likely add back onto the nearby unsaturated ring system of the postactivated enediyne core, inducing the formation of interstrand cross-links, connecting either A1 to A2 or A1 to A3, or drug monoadducts mainly on A2 or A3. Comparative studies with other enediynes, such as neocarzinostatin and calicheamicin gamma1I under similar reaction conditions indicate that the anaerobic reaction process is a kinetically competitive one, depending on the proximity of the drug unsaturated ring system or dioxygen to the sugar radicals and their quenching by other hydrogen sources such as solvent or thiols. It was found that C1027 mainly generates interstrand cross-links, whereas most of the anaerobic lesions produced by neocarzinostatin are drug monoadducts. Calicheamicin gamma1I was found to be less efficient in producing both lesions. The anaerobic DNA lesions induced by enediyne antitumor antibiotics may have important implications for their potent cytotoxicity in the central regions of large tumors, where relative anaerobic conditions prevail.  相似文献   

7.
Using the comet assay, we showed that nickel chloride at 250-1000 microM induced DNA damage in human lymphocytes, measured as the change in comet tail moment, which increased with nickel concentration up to 500 microM and then decreased. Observed increase might follow from the induction of strand breaks or/and alkali-labile sites (ALS) by nickel, whereas decrease from its induction of DNA-DNA and/or DNA-protein cross-links. Proteinase K caused an increase in the tail moment, suggesting that nickel chloride at 1000 microM might cross-link DNA with nuclear proteins. Lymphocytes exposed to NiCl(2) and treated with enzymes recognizing oxidized and alkylated bases: endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), displayed greater extent of DNA damage than those not treated with these enzymes, indicating the induction of oxidized and alkylated bases by nickel. The incubation of lymphocytes with spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and PBN decreased the extent of DNA damage, which might follow from the production of free radicals by nickel. The pre-treatment with Vitamin C at 10 microM and Vitamin E at 25 microM decreased the tail moment of the cells exposed to NiCl(2) at the concentrations of the metal causing strand breaks or/and ALS. The results obtained suggest that free radicals may be involved in the formation of strand breaks or/and ALS in DNA as well as DNA-protein cross-links induced by NiCl(2). Nickel chloride can also alkylate DNA bases. Our results support thesis on multiple, free radicals-based genotoxicity pathways of nickel.  相似文献   

8.
Cis-diamminedichloroplatinum(II) (cisplatin, cis-DDP) is well studied anticancer drug, whose activity can be attributed to its ability to form adducts with DNA, but this drug can also form DNA-damaging free radicals, however this mechanism of cisplatin action is far less explored. Using the comet assay we studied cisplatin-induced DNA damage in the presence of spin traps: DMPO and PBN, Vitamins A, C and E as well as the tyrosine kinases inhibitor STI571 in normal human lymphocytes and leukemic K562 cells. The latter cells express the BCR/ABL fusion protein, which can be a target of the tyrosine kinase inhibitor STI571. A 20 h incubation with cisplatin at 1-10 microM induced DNA cross-links and DNA fragmentation in normal and cancer cells. Cisplatin could induce intra- and interstrand DNA-DNA cross-links as well as DNA-protein cross-links. DNA damage in K562 cells was more pronounced than in normal lymphocytes. In the presence of spin traps and vitamins we noticed a decrease in the DNA fragmentation in both cell types. Co-treatment of the lymphocytes with cisplatin at 10 microM and STI571 at 0.25 microg/ml caused an increase of DNA fragmentation in comparison with DNA fragmentation induced by cisplatin alone. In the case of K562 cells, an increase of DNA fragmentation was observed after treatment with cisplatin at 1 microM. Our results indicate that the free radicals scavengers could decrease DNA fragmentation induced by cisplatin in the normal and cancer cells, but probably they have no effect on DNA cross-linking induced by the drug. The results obtained with the BCR/ABL inhibitor suggest that K562 cells could be more sensitive towards co-treatment of cisplatin and STI571. Our results suggest also that aside from the BCR/ABL other factors such as p53 level, signal transduction pathways and DNA repair processes can be responsible for the increased sensitivity of K562 cells to cisplatin compared with normal lymphocytes.  相似文献   

9.
Psoralens produce DNA interstrand cross-links which are thought to be repaired via a sequential excision and recombination mechanism in Escherichia coli. The first round of incision by UvrABC has been characterized: it results in 11-base oligonucleotide cross-linked to an intact DNA strand (Van Houten, B., Gamper, B., Holbrook, S.R., Hearst, J.E., and Sancar, A. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8077-8081). In the present work, DNA substrates containing 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) cross-links in defined positions are constructed and used to analyze the other steps in repair. It is shown that RecA protein mediates strand transfer past an oligonucleotide cross-linked to a single-stranded DNA circle and that the resulting heteroduplex is a substrate for the UvrABC complex: it excises a double-stranded oligonucleotide which contains the HMT cross-link. It is also found that the first round of UvrABC incision does not lead directly to strand exchange but that an intervening step is needed. That step is carried out in vitro by the 5'-exonuclease activity of DNA polymerase I (pol I) which creates a single-stranded DNA region (a gap) at an incised cross-link such that RecA can initiate strand exchange. Studies using cross-linked oligonucleotides showed that the gap produced by pol I results from the inability of the polymerase to add nucleotides to a 3'-OH end two to three nucleotides away from the furan side of an HMT cross-link. Pol I can, however, extend a 3'-OH end next to the pyrone side of the cross-link. Since UvrABC incises predominantly the furan side of psoralen cross-links in duplex DNA, this discrepancy has important consequences for repair.  相似文献   

10.
The microbial eukaryote Saccharomyces cerevisiae has 18 chromosomes, each consisting of a DNA molecule of 1 to 15×108 daltons (150 to 2,300 kilobase pairs). Interstand cross-links have now been found in molecules of all sizes by examining the ability of high molecular weight DNA to snap back, i.e., to rapidly renature after denaturation. Experiments in which snap back was assessed for molecules broken by shearing indicate that there are probably two cross-links in each chromosome. Evidence that the cross-links occur at specific sites in the genome was obtained by treating total chromosomal DNA with the endonuclease EcoRI which cleaves the yeast genome into approximately 2,000 discrete fragments. Cross-link containing fragments were separated from fragments without cross-links. This purification resulted in enrichment for about 18 specific fragments. To determine whether the cross-links are terminal or at internal sites in chromosomal DNA, large shear-produced fragments were examined by electron microscopy. With complete denaturation few fragments exhibited the X-shaped single strand configuration expected for internal cross-links. When partially denatured fragments were examined some ends had single strand loops as expected for (AT-rich) cross-linked termini. The percentage of looped ends was sufficient to account for all the cross-links in the population of chromosomal molecules. The data suggest that yeast chromosomal DNA molecules have cross-linked termini. We propose that a duplex chromosomal DNA molecule in this eukaryote consists of a continuous, single, self-complementary strand of DNA. This structure has implications for the mechanism of chromosome replication and may be the basis of telomere behavior.  相似文献   

11.
Abstract

DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this “cross-linking effect” (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the “cross-linking effect” (18–20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20–40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

12.
A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua), a ubiquitous marker of almost every type of oxidative stress in cells. Efforts to standardize the nomenclature and abbreviations of the main DNA degradation products that arise from oxidative pathways are reported. Information is also provided on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included.  相似文献   

13.
Dedicated to Prof. Jan H. J. Hoeijmakers.

Referee: Dr. Nawin C. Mishra, Professor of Genetics, University of South Carolina, Department of Biological Sciences, Columbia, SC 29208

Despite stable genomes of all living organisms, they are subject to damage by chemical and physical agents in the environment (e.g., UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. The DNA lesions produced by these damaging agents could be altered base, missing base, mismatch base, deletion or insertion, linked pyrimidines, strand breaks, intra- and inter-strand cross-links.  相似文献   

14.
DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this "cross-linking effect" (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the "cross-linking effect" (18 - 20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20- 40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

15.
A paradigm for the structure-pharmacological activity relationship of bifunctional platinum antitumor drugs is that the trans isomer of antitumor cisplatin (transplatin) is clinically ineffective. To this end, however, several new complexes of the trans structure have been identified that exhibit cytotoxicity in tumor cells that is even better than that of the analogous cis isomers. We reported recently (Kasparkova, J., Marini, V., Najajreh, Y., Gibson, D., and Brabec, V. (2003) Biochemistry 42, 6321-6332) that the replacement of one ammine ligand by the heterocyclic ligand, such as piperidine, piperazine, or 4-picoline in the molecule of transplatin resulted in a radical enhancement of its cytotoxicity. We examined oligodeoxyribonucleotide duplexes bearing a site-specific cross-link of the transplatin analogue containing the piperidine ligand by biochemical methods. The results indicate that in contrast to transplatin, trans-(PtCl2(NH3)(piperidine)) forms stable 1,3-intrastrand cross-links in double-helical DNA that distort DNA and are not readily removed from DNA by nucleotide excision repair system. Hence, the intrastrand cross-links of trans-(PtCl2(NH3)(piperidine)) could persist for a sufficiently long time, potentiating its toxicity toward tumor cells. trans-(PtCl2(NH3)(piperidine)) also forms in DNA minor interstrand cross-links that are similar to those of transplatin so that these adducts appear less likely candidates for genotoxic lesion responsible for antitumor effects of trans-(PtCl2(NH3)(piperidine)). Hence, the role of structurally unique intrastrand cross-links in the anti-tumor effects of transplatin analogues in which one ammine group is replaced by a heterocyclic ligand may predominate.  相似文献   

16.
The effects of nitracrine (1-nitro-9-(3,3-N,N-dimethylaminopropylamino)acridine on DNA of cultured HeLa cells were studied. DNA strand breakage and interstrand cross-linking as well as DNA-protein cross-linking were measured by means of an alkaline elution technique and were compared with the cytotoxic effect of the drug. Interstrand cross-links were not detectable in the concentration range that inhibited cell growth up to 99%. DNA single-strand breaks were found when cells were treated with highly cytotoxic doses of the drug. DNA breakage was not reparable and exhibited a tendency to increase during incubation after drug removal. The only chromatin lesion induced by sublethal doses of nitracrine were DNA-protein cross-links which persisted for 24 h after drug treatment. It is concluded that DNA breaks represent degraded DNA from dying cells, whereas DNA-protein cross-links are specific cellular lesions, which may be responsible for the cell-killing effect of nitracrine.  相似文献   

17.
Interstrand psoralen cross-links do not introduce appreciable bends in DNA   总被引:6,自引:0,他引:6  
R R Sinden  P J Hagerman 《Biochemistry》1984,23(26):6299-6303
Analysis of the X-ray crystallographic structure of an 8-methoxypsoralen-thymine monoadduct has led to the suggestion that psoralen cross-links would bend DNA by as much as 70 degrees [Peckler, S., Graves, B., Kanne, D., Rapoport, H., Hearst, J. E., & Kim, S.-H. (1982) J. Mol. Biol. 162, 157-172]. DNA can exist in a stably bent configuration in solution as recently demonstrated from analysis of polyacrylamide gel electrophoresis and differential decay of birefringence. Using these techniques, we have investigated the structure of DNA cross-linked with 8-methoxypsoralen and 4,5',8-trimethylpsoralen. The results are not consistent with cross-links introducing any appreciable stable bend in double-stranded DNA molecules. Results suggest that photobound 4,5',8-trimethylpsoralen molecules lengthen DNA by the equivalent of about one base pair per photobound adduct. We have also determined that 4,5',8-trimethylpsoralen cross-links are introduced preferentially into 5'-TA compared to 5'-AT DNA sequences.  相似文献   

18.
DNA damage induced by oxygen radicals, e.g., hydroxyl radicals generated in living cells either by cellular metabolism or external agents such as ionizing radiations, appears to play an important role in mutagenesis, carcinogenesis, and aging. Elucidation of the chemical nature of such DNA lesions at biologically significant quantities is required for the assessment of their biological consequences and repair. For this purpose, a sensitive method using gas chromatography-mass spectrometry with the selected-ion-monitoring technique (GC-MS/SIM) was developed in the present work. DNA was exposed to hydroxyl radicals and hydrogen atoms produced by ionizing radiation in N2O-saturated aqueous solution. DNA samples were subsequently hydrolyzed with formic acid, trimethylsilylated, and analyzed by GC-MS/SIM. Characteristic ions from previously known mass spectra of DNA base products as their trimethylsilyl derivatives were recorded and the area counts of each ion were integrated. From these acquired data, a partial mass spectrum of each product was generated and then compared with those of authentic materials. This technique permitted the detection and characterization of a large number of free radical-induced based products of DNA, i.e., 5,6-dihydrothymine, 5-hydroxy-5,6-dihydrothymine, 5-hydroxymethyluracil, 5-hydroxyuracil, 5-hydroxycytosine, thymine glycol, 4,6-diamino-5-formamidopyrimidine, 8-hydroxyadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 8-hydroxyguanine, simultaneously in a single sample after radiation doses from 0.1 to 10 Gy. Detectable amounts of the base products were found to be as low as approximately 10 fmol per injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In vivo alkylation of Yoshida sarcoma cell DNA by 3H-labelled 1,2:5,6-dianhydrogalactitol (DAG) yielded N-7 monogalactitylguanines and 1,6-di-(guanin-7-yl)-galactitol, similar to the alkylated products obtained by in vitro reaction of DNA with dianhydrogalactitol in neutral solution. The ratio between monoalkylguanines and diguaninyl product was 2–2.5, slightly increasing with doses. Persistence of alkylated products in DNA was followed in function of time. There was no significant loss of either monoalkylated bases or diguaninyl derivative during the observation period i.e. 7–24 h after treatment. In contrast, the physical measurements of the amount of renaturable DNA showed a rapid opening of cross-links in the same period. Taking the presence of diguaninyl moiety as an indicator of cross-links in DNA, these two latter findings show an apparent contradiction which could be reconciled however by the mechanism proposed by Reid and Walker (Biochim. Biophys. Acta, 179 (1969) 179) for the removal of cross-linkage induced by HN2. Accordingly, one arm of the cross-links is removed, probably enzymically, leaving the DNA non-renaturable, while the other arm of cross-link is still covalently attached to the DNA molecule rendering possible the detection of diguaninyl moiety in DNA at some later time. This concept for the removal of cross-links from DNA seems to be supported by our results too.  相似文献   

20.
The aim of this work is to investigate the antioxidative effect of melatonin (N-acetyl-5-methoxytryptamine) on the oxidation of DNA and human erythrocytes induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). First, the 50% inhibition concentration (IC50) of melatonin is measured by reacting with two radical species, i.e., 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS*+) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH). The IC50 of melatonin are 75microM and 300microM when melatonin reacts with ABTS*+ and DPPH, respectively. Especially, the reactions of melatonin with ABTS*+ and DPPH are the direct evidence for melatonin to trap radicals. Then, melatonin is applied to protect DNA and human erythrocytes against oxidative damage and hemolysis induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). The presence of melatonin prolongs the occurrence of the oxidative damage of DNA and hemolysis of erythrocytes, generating an inhibition period (t(inh)). The proportional relationship between t(inh) and the concentration of melatonin ([MLT]) is treated by the chemical kinetic equation, t(inh)=(n/R(i))[MLT], in which n means the number of peroxyl radical trapped by an antioxidant, and R(i) stands for the initiation rate of the radical reaction. It is found that every molecule of melatonin can trap almost two radicals in protecting DNA and erythrocytes. Furthermore, quantum calculation proves that the indole-type radical derived from melatonin is much stable than amide-type radical. Finally, melatonin is able to accelerate hemolysis of erythrocytes induced by hemin, indicating that melatonin leads to the collapse of the erythrocyte membrane in the presence of hemin. This may provide detailed information for the usage of melatonin and helpful reference for the design of indole-related drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号